Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White


  • Olivier PourretEmail author
  • Michel-Pierre FauconEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_271

Element Data

Atomic Symbol: Co

Atomic Number: 27

Atomic Weight: 58.933195 g/mol

Isotopes and Abundances: 59Co 100%

1 Atm Melting Point: 1495 °C

1 Atm Boiling Point: 2927 °C

Common Valences: 2+, 3+

Ionic Radii: 65 pm (2+, 6-fold coordination)

Pauling Electronegativity: 1.88

First Ionization Energy: 7.88 eV

Chondritic (CI) Abundance: 513 ppma

Silicate Earth Abundance: 102 ppma

Crustal Abundance: 26.6 ppmb

Seawater Abundance: ~3–300 pmol/kgc

Core Abundance: 0.25%d

aPalme et al. (2014)

bRudnick and Gao (2014)

cBruland et al. (2014)

dMcDonough (2014)


Cobalt (chemical symbol, Co) is a d-block transition metal, bluish white. It appears in the first long period of the periodic table between iron and nickel. Cobalt shares many chemical and physical properties with these two elements. Naturally occurring Co consists of a single stable isotope: 59Co, whereas 60Co is an artificial isotope that is an important γ-ray source. Cobalt has two main oxidation states (2+ and 3+). The common...

This is a preview of subscription content, log in to check access.


  1. Banza CLN, Nawrot TS, Haufroid V, Decrée S, De Putter T, Smolders E, Kabyla BI, Luboya OS, Ilunga AN, Mutombo AM, Nemery B (2009) High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environ Res 109:745–752CrossRefGoogle Scholar
  2. Blackman AG (2006) Cobalt: inorganic & coordination chemistry. In: Encyclopedia of inorganic chemistry. Wiley, ChichesterGoogle Scholar
  3. Brown GE, Calas G (2012) Section 18. Mineral-water interfaces as driving forces for metal concentration: the example of cobalt trapping by Mn-Oxides. Geochem Perspect 1:667–669Google Scholar
  4. Bruland KW, Middag R, Lohan MC (2014) 8.2 – controls of trace metals in seawater. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 19–51CrossRefGoogle Scholar
  5. Cheyns K, Banza Lubaba Nkulu C, Ngombe LK, Asosa JN, Haufroid V, De Putter T, Nawrot T, Kimpanga CM, Numbi OL, Ilunga BK et al (2014) Pathways of human exposure to cobalt in Katanga, a mining area of the D.R. Congo. Sci Total Environ 490:313–321CrossRefGoogle Scholar
  6. Chivers PT (2014) Chapter 14 Cobalt and nickel. In: Maret W, Wedd A (eds) Binding, transport and storage of metal ions in biological cells. The Royal Society of Chemistry, Cambridge, UK, pp 381–428CrossRefGoogle Scholar
  7. Collins RN, Kinsela AS (2010) The aqueous phase speciation and chemistry of cobalt in terrestrial environments. Chemosphere 79:763–771CrossRefGoogle Scholar
  8. Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG (2011) Extractive metallurgy of nickel, cobalt and platinum group metals. Elsevier, AmsterdamGoogle Scholar
  9. Decrée S, Pourret O, Baele J-M (2015) Rare earth element fractionation in heterogenite (CoOOH): implication for cobalt oxidized ore in the Katanga Copperbelt (Democratic Republic of Congo). J Geochem Explor 159:290–301CrossRefGoogle Scholar
  10. Faucon MP, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36CrossRefGoogle Scholar
  11. Flora SJS (2014) Chapter 22 – Metals. In: Aronson JK (ed) Side effects of drugs annual. Elsevier, Amsterdam, pp 297–322Google Scholar
  12. Gaillardet J, Viers J, Dupré B (2014) 7.7 – trace elements in river waters. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 195–235CrossRefGoogle Scholar
  13. Gunn G (2014) Critical metal handbook. Wiley, ChichesterCrossRefGoogle Scholar
  14. Haynes WM (2015) CRC handbook of chemistry and physics, 96th edn. CRC Press, Boca RatonGoogle Scholar
  15. Josso P, Pelleter E, Pourret O, Fouquet Y, Etoubleau J, Cheron S, Bollinger C (2017) A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements. Ore Geol Rev 87:3–15CrossRefGoogle Scholar
  16. Lange B, van der Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F, Meerts P, Pourret O, Verbruggen N, Faucon M-P (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213:537–551CrossRefGoogle Scholar
  17. McDonough WF (2014) 3.16 – compositional model for the Earth’s core. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 559–577CrossRefGoogle Scholar
  18. Palme H, Lodders K, Jones A (2014) 2.2 – solar system abundances of the elements. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 15–36CrossRefGoogle Scholar
  19. Pourret O, Lange B, Bonhoure J, Colinet G, Decrée S, Mahy G, Séleck M, Shutcha M, Faucon M-P (2016) Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Appl Geochem 64:43–55CrossRefGoogle Scholar
  20. Raveau B, Seikh MM (2012) Cobalt oxides: from crystal chemistry to physics. Wiley, WeinheimCrossRefGoogle Scholar
  21. Rudnick RL, Gao S (2014) 4.1 – composition of the continental crust. In: Turekian HD, Holland KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 1–51Google Scholar
  22. Simonsen LO, Harbak H, Bennekou P (2012) Cobalt metabolism and toxicology – a brief update. Sci Total Environ 432:210–215CrossRefGoogle Scholar
  23. Underwood EJ (1977) 5 – cobalt. In: Underwood EJ (ed) Trace elements in human and animal nutrition, 4th edn. Academic, New York, pp 132–158CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UniLaSalleBeauvais CedexFrance