Skip to main content

Boron Stable Isotopes

  • Reference work entry
  • First Online:
Encyclopedia of Geochemistry

Properties

Boron, a group 13 metalloid, has two natural occurring stable isotopes, 11B (11.00930536[45]) and 10B (10.01293695[41]), with relative abundances of 0.199(7) and 0.801(7), respectively, and hence occurs approximately in a 4:1 ratio (source of data: National Institute of Standards and Technology, http://www.nist.gov/pml/data/comp.cfm). Numerous radioisotopes of boron also occur with masses from 7B to 17B, but their half-lives are all <1 s. As with other stable isotopic systems, natural isotope variation is described using delta notation, i.e., the per mil variation from the 11B/10B ratio of the synthetic boric acid international reference material NIST SRM-951 (atom%: 11B = 80.173 ± 0.013; 10B = 19.827 ± 0.013; Catanzaro et al. 1970). This can be described by the following equation:

$$ {\delta}^{11}B=\left(\frac{{}^{11}B/{}^{10}B_{\mathrm{sample}}}{{}^{11}B/{}^{10}B_{\mathrm{reference}}}-1\right)\times {10}^3 $$
(1)

In natural systems, boron is almost exclusively found bound...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aston FW (1920) The mass-spectra of chemical elements. Philos Mag 39:611–625

    Article  Google Scholar 

  • Barth S (1993) Boron isotope variations in nature: a synthesis. Geol Rundsch 82:640–651

    Article  Google Scholar 

  • Barth S (1998) Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater. Water Resour 32:685–690

    Google Scholar 

  • Bast R, Scherer EE, Mezger K, Austheim H, Ludwig T, Marschall HR, Putnis A, Lowen K (2014) Boron isotopes in tourmaline as a tracer of metasomatic processes in the Bamble sector of Southern Norway. Contrib Mineral Petrol 168:1069

    Article  Google Scholar 

  • Catanzaro EJ, Champion CE, Garner EL, Marinenko G, Sappenfield KM, Shields WR (1970) Boric assay; isotopic, and assay standard reference materials. https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwiBn8Wi7OvPAhWhJ8AKHbXzAxsQFggjMAE&url=https%3A%2F%2Fwww.nist.gov%2Fdocument-10540&usg=AFQjCNE_2yV4zQHmpOjae2B7dz2xOVTPEw&sig2=85gz67j2R_NdoNe0gp7Vsg

  • Chaussidon M (1995) Isotope geochemistry of boron in mantle rocks, tektites and meteorites. Comptes Rendus de l’Academie des Sciences Paris 321:455–472

    Google Scholar 

  • Chaussidon M, Marty B (1995) Primitive boron isotope composition of the mantle. Science 269:383–386

    Article  Google Scholar 

  • Chaussidon M, Robert F (1995) Nucleosynthesis of 11B-rich boron in the presolar cloud recorded in meteoritic chondrules. Nature 374:337–339

    Article  Google Scholar 

  • Fietzke J, Heinemann A, Taubner I, Bohm F, Erez J, Eisenhauer A (2010) Boron isotopic ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference materials. J Anal At Spectrom 25:1953–1957

    Article  Google Scholar 

  • Foster GL (2008) Seawater pH, pCO2 and [CO32−] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera. Earth Planet Sci Lett 271:254–266

    Article  Google Scholar 

  • Foster GL, Rae JWB (2016) Reconstructing Ocean pH with boron isotopes in foraminifera. Annu Rev Earth Planet Sci 44:207–237

    Article  Google Scholar 

  • Foster GL, Pogge von Strandmann PAE, Rae JWB (2010) Boron and magnesium isotopic composition of seawater. Geochem Geophys Geosyst 11:Q08015. https://doi.org/10.1029/2010GC003201

    Article  Google Scholar 

  • Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56:537–543

    Article  Google Scholar 

  • Henehan MJ, Rae JWB, Foster GL, Erez J, Prentice KC, Kurcera M, Bostock HC, Martinez-Boti MA, Milton JA, Wilson PA, Marshall B, Elliott T (2013) Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet Sci Lett 364:111–122

    Article  Google Scholar 

  • Ishikawa T, Nakamura E (1993) Boron isotope systematics of marine sediments. Earth Planet Sci Lett 117:567–580

    Article  Google Scholar 

  • Klochko K, Kaufman AJ, Yoa W, Byrne RH, Tossell JA (2006) Experimental measurement of boron isotope fractionation in seawater. Earth Planet Sci Lett 248:261–270

    Article  Google Scholar 

  • Lécuyer C, Grandjean P, Reynard B, Albarede F, Telouk P (2002) 11B/10B analysis of geological materials by ICP-MS Plasma 54: application to the boron fractionation between brachiopod calcite and seawater. Chem Geol 186:45–55

    Article  Google Scholar 

  • Lee K, Kim T-W, Byrne RH, Millero FJ, Feely RA, Liu Y-M (2010) The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim Cosmochim Acta 74:1801–1811

    Article  Google Scholar 

  • Leeman WP, Tonarini S, Chan LH, Borg LE (2004) Boron and lithium isotopic variations in a hot subduction zone – the southern Washington Cascades. Chem Geol 212:101–124

    Article  Google Scholar 

  • Lemarchand D, Gaillardet J, Lewin E, Allegre CJ (2002) Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chem Geol 190:123–140

    Article  Google Scholar 

  • Lodders K (2010) Solar system abundances of the elements. In: Goswami A, Reddy BE (eds) Principles and perspectives in cosmochemistry. Astrophysics and space science proceedings. Springer, Berlin/Heidelberg, pp 379–417

    Chapter  Google Scholar 

  • Marschall HR, Jiang SY (2011) Tourmaline isotopes: no element left behind. Elements 7:313–319

    Article  Google Scholar 

  • Martinez-Boti MA, Foster GL, Chalk TB, Rohling EJ, Sexton PF, Lunt DJ, Pancost RD, Badger MPS, Schmidt D (2015) Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518:49–54

    Article  Google Scholar 

  • McCulloch MT, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Chang 2:623–627

    Article  Google Scholar 

  • McMullen CC, Gragg CB, Thode HG (1961) Absolute ratio B11/B10 in Searles Lake borax. Geochim Cosmochim Acta 23:147–149

    Google Scholar 

  • Menard G, Vlastélic I, Ionov DA, Rose-Koga EF, Piro J-L, Pin C (2013) Precise and accurate determination of boron concentration in silicate rocks by direct isotope dilution ICP-MS: insights into the B budget of the mantle and B behavior in magmatic systems. Chem Geol 354:139–149

    Article  Google Scholar 

  • Meyer C, Wunder B, Meixner A, Romer RL, Heinrich W (2008) Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contrib Mineral Petrol 156:259–267

    Article  Google Scholar 

  • Nir O, Vengosh A, Harkness JS, Dwyer GS, Lahav O (2015) Direct measurement of the boron isotope fractionation factor: reducing the uncertainty in reconstructing ocean paleo-pH. Earth Planet Sci Lett 414:1–5

    Article  Google Scholar 

  • Palmer MR, Spivack AJ, Edmond JM (1987) Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim Cosmochim Acta 51:2319–2323

    Article  Google Scholar 

  • Palmer MR, London D, Morgan GB, Babb HA (1992) Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapour: a temperature and pressure dependent isotopic system. Chem Geol 101:123–129

    Google Scholar 

  • Rae JWB, Foster GL, Schmidt DN, Elliott T (2011) Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet Sci Lett 302:403–413

    Article  Google Scholar 

  • Rosner M, Erzinger J, Franz G, Trumbull RB (2003) Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration. Geochem Geophys Geosyst 4(8). https://doi.org/10.1029/2002GC000438

  • Sanyal A, Nugent M, Reeder RJ, Bijma J (2000) Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments. Geochim Cosmochim Acta 64:1551–1555

    Article  Google Scholar 

  • Schmitt A-D, Vigier N, Lemarchand D, Millot R, Stille P, Chabaux F (2012) Processes controlling the stable isotope compositions of Li, B, Mg and Ca in plants, soils and waters: a review. Compt Rendus Geosci 344:704–722

    Article  Google Scholar 

  • Simon L, Lécuyer C, Maréchal C, Coltice N (2006) Modelling the geochemical cycle of boron: implications for the long-term δ11B evolution of seawater and oceanic crust. Chem Geol 225:61–76

    Article  Google Scholar 

  • Smith HJ, Spivack AJ, Staudigel H, Hart SR (1995) The boron isotopic composition of altered oceanic crust. Chem Geol 126:119–135

    Article  Google Scholar 

  • Spivack AJ, Edmond JM (1987) Boron isotope exchange between seawater and the oceanic-crust. Geochim Cosmochim Acta 51:1033–1043

    Article  Google Scholar 

  • Vengosh A, Chivas AR, McCulloch MT, Starinsky A, Kolodny Y (1991) Boron isotope geochemistry of Australian salt lakes. Geochem Cosmochim Acta 55:2591–2606

    Article  Google Scholar 

  • Warner NR, Darrah TH, Jackson RB, Millot R, Kloppmann W, Vengosh A (2014) New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations. Environ Sci Technol 48(21):12552–12560

    Article  Google Scholar 

  • Xiao J, Xiao Y-K, Jin Z-D, He M-Y, Liu C-Q (2013) Boron isotope variations and its geochemical application in nature. Aust J Earth Sci 60:431–447

    Article  Google Scholar 

  • Xu Q, Dong Y, Zhu H, Sun A (2015) Separation and analysis of boron isotope in high plant by thermal ionisation mass spectrometry. Int J Anal Chem 2015:6. Article ID 364242. https://doi.org/10.1155/2015/364242

    Article  Google Scholar 

  • Zeebe R, Wolf-Gladow DA (2001) CO2in seawater: equilibrium, kinetics, isotopes. Elsevier, Amesterdam

    Google Scholar 

  • Zeininger H, Heumann KG (1983) Boron isotopic ratio measurement by negative thermal ionization mass spectrometry. Int J Mass Spectrom Ion Process 48:377–380

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gavin L. Foster , Christophe Lécuyer or Horst R. Marschall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Foster, G.L., Lécuyer, C., Marschall, H.R. (2018). Boron Stable Isotopes. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_238

Download citation

Publish with us

Policies and ethics