Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Boron Stable Isotopes

  • Gavin L. FosterEmail author
  • Christophe LécuyerEmail author
  • Horst R. MarschallEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_238


Boron, a group 13 metalloid, has two natural occurring stable isotopes, 11B (11.00930536[45]) and 10B (10.01293695[41]), with relative abundances of 0.199(7) and 0.801(7), respectively, and hence occurs approximately in a 4:1 ratio (source of data: National Institute of Standards and Technology, http://www.nist.gov/pml/data/comp.cfm). Numerous radioisotopes of boron also occur with masses from 7B to 17B, but their half-lives are all <1 s. As with other stable isotopic systems, natural isotope variation is described using delta notation, i.e., the per mil variation from the 11B/ 10B ratio of the synthetic boric acid international reference material NIST SRM-951 (atom%: 11B = 80.173 ± 0.013; 10B = 19.827 ± 0.013; Catanzaro et al. 1970). This can be described by the following equation:
$$ {\delta}^{11}B=\left(\frac{{}^{11}B/{}^{10}B_{\mathrm{sample}}}{{}^{11}B/{}^{10}B_{\mathrm{reference}}}-1\right)\times {10}^3 $$
This is a preview of subscription content, log in to check access.


  1. Aston FW (1920) The mass-spectra of chemical elements. Philos Mag 39:611–625CrossRefGoogle Scholar
  2. Barth S (1993) Boron isotope variations in nature: a synthesis. Geol Rundsch 82:640–651CrossRefGoogle Scholar
  3. Barth S (1998) Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater. Water Resour 32:685–690Google Scholar
  4. Bast R, Scherer EE, Mezger K, Austheim H, Ludwig T, Marschall HR, Putnis A, Lowen K (2014) Boron isotopes in tourmaline as a tracer of metasomatic processes in the Bamble sector of Southern Norway. Contrib Mineral Petrol 168:1069CrossRefGoogle Scholar
  5. Chaussidon M (1995) Isotope geochemistry of boron in mantle rocks, tektites and meteorites. Comptes Rendus de l’Academie des Sciences Paris 321:455–472Google Scholar
  6. Chaussidon M, Marty B (1995) Primitive boron isotope composition of the mantle. Science 269:383–386CrossRefGoogle Scholar
  7. Chaussidon M, Robert F (1995) Nucleosynthesis of 11B-rich boron in the presolar cloud recorded in meteoritic chondrules. Nature 374:337–339CrossRefGoogle Scholar
  8. Fietzke J, Heinemann A, Taubner I, Bohm F, Erez J, Eisenhauer A (2010) Boron isotopic ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference materials. J Anal At Spectrom 25:1953–1957CrossRefGoogle Scholar
  9. Foster GL (2008) Seawater pH, pCO2 and [CO32−] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera. Earth Planet Sci Lett 271:254–266CrossRefGoogle Scholar
  10. Foster GL, Rae JWB (2016) Reconstructing Ocean pH with boron isotopes in foraminifera. Annu Rev Earth Planet Sci 44:207–237CrossRefGoogle Scholar
  11. Foster GL, Pogge von Strandmann PAE, Rae JWB (2010) Boron and magnesium isotopic composition of seawater. Geochem Geophys Geosyst 11:Q08015.  https://doi.org/10.1029/2010GC003201CrossRefGoogle Scholar
  12. Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56:537–543CrossRefGoogle Scholar
  13. Henehan MJ, Rae JWB, Foster GL, Erez J, Prentice KC, Kurcera M, Bostock HC, Martinez-Boti MA, Milton JA, Wilson PA, Marshall B, Elliott T (2013) Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet Sci Lett 364:111–122CrossRefGoogle Scholar
  14. Ishikawa T, Nakamura E (1993) Boron isotope systematics of marine sediments. Earth Planet Sci Lett 117:567–580CrossRefGoogle Scholar
  15. Klochko K, Kaufman AJ, Yoa W, Byrne RH, Tossell JA (2006) Experimental measurement of boron isotope fractionation in seawater. Earth Planet Sci Lett 248:261–270CrossRefGoogle Scholar
  16. Lécuyer C, Grandjean P, Reynard B, Albarede F, Telouk P (2002) 11B/10B analysis of geological materials by ICP-MS Plasma 54: application to the boron fractionation between brachiopod calcite and seawater. Chem Geol 186:45–55CrossRefGoogle Scholar
  17. Lee K, Kim T-W, Byrne RH, Millero FJ, Feely RA, Liu Y-M (2010) The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim Cosmochim Acta 74:1801–1811CrossRefGoogle Scholar
  18. Leeman WP, Tonarini S, Chan LH, Borg LE (2004) Boron and lithium isotopic variations in a hot subduction zone – the southern Washington Cascades. Chem Geol 212:101–124CrossRefGoogle Scholar
  19. Lemarchand D, Gaillardet J, Lewin E, Allegre CJ (2002) Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chem Geol 190:123–140CrossRefGoogle Scholar
  20. Lodders K (2010) Solar system abundances of the elements. In: Goswami A, Reddy BE (eds) Principles and perspectives in cosmochemistry. Astrophysics and space science proceedings. Springer, Berlin/Heidelberg, pp 379–417CrossRefGoogle Scholar
  21. Marschall HR, Jiang SY (2011) Tourmaline isotopes: no element left behind. Elements 7:313–319CrossRefGoogle Scholar
  22. Martinez-Boti MA, Foster GL, Chalk TB, Rohling EJ, Sexton PF, Lunt DJ, Pancost RD, Badger MPS, Schmidt D (2015) Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518:49–54CrossRefGoogle Scholar
  23. McCulloch MT, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Chang 2:623–627CrossRefGoogle Scholar
  24. McMullen CC, Gragg CB, Thode HG (1961) Absolute ratio B11/B10 in Searles Lake borax. Geochim Cosmochim Acta 23:147–149Google Scholar
  25. Menard G, Vlastélic I, Ionov DA, Rose-Koga EF, Piro J-L, Pin C (2013) Precise and accurate determination of boron concentration in silicate rocks by direct isotope dilution ICP-MS: insights into the B budget of the mantle and B behavior in magmatic systems. Chem Geol 354:139–149CrossRefGoogle Scholar
  26. Meyer C, Wunder B, Meixner A, Romer RL, Heinrich W (2008) Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contrib Mineral Petrol 156:259–267CrossRefGoogle Scholar
  27. Nir O, Vengosh A, Harkness JS, Dwyer GS, Lahav O (2015) Direct measurement of the boron isotope fractionation factor: reducing the uncertainty in reconstructing ocean paleo-pH. Earth Planet Sci Lett 414:1–5CrossRefGoogle Scholar
  28. Palmer MR, Spivack AJ, Edmond JM (1987) Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim Cosmochim Acta 51:2319–2323CrossRefGoogle Scholar
  29. Palmer MR, London D, Morgan GB, Babb HA (1992) Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapour: a temperature and pressure dependent isotopic system. Chem Geol 101:123–129Google Scholar
  30. Rae JWB, Foster GL, Schmidt DN, Elliott T (2011) Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet Sci Lett 302:403–413CrossRefGoogle Scholar
  31. Rosner M, Erzinger J, Franz G, Trumbull RB (2003) Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration. Geochem Geophys Geosyst 4(8).  https://doi.org/10.1029/2002GC000438
  32. Sanyal A, Nugent M, Reeder RJ, Bijma J (2000) Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments. Geochim Cosmochim Acta 64:1551–1555CrossRefGoogle Scholar
  33. Schmitt A-D, Vigier N, Lemarchand D, Millot R, Stille P, Chabaux F (2012) Processes controlling the stable isotope compositions of Li, B, Mg and Ca in plants, soils and waters: a review. Compt Rendus Geosci 344:704–722CrossRefGoogle Scholar
  34. Simon L, Lécuyer C, Maréchal C, Coltice N (2006) Modelling the geochemical cycle of boron: implications for the long-term δ11B evolution of seawater and oceanic crust. Chem Geol 225:61–76CrossRefGoogle Scholar
  35. Smith HJ, Spivack AJ, Staudigel H, Hart SR (1995) The boron isotopic composition of altered oceanic crust. Chem Geol 126:119–135CrossRefGoogle Scholar
  36. Spivack AJ, Edmond JM (1987) Boron isotope exchange between seawater and the oceanic-crust. Geochim Cosmochim Acta 51:1033–1043CrossRefGoogle Scholar
  37. Vengosh A, Chivas AR, McCulloch MT, Starinsky A, Kolodny Y (1991) Boron isotope geochemistry of Australian salt lakes. Geochem Cosmochim Acta 55:2591–2606CrossRefGoogle Scholar
  38. Warner NR, Darrah TH, Jackson RB, Millot R, Kloppmann W, Vengosh A (2014) New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations. Environ Sci Technol 48(21):12552–12560CrossRefGoogle Scholar
  39. Xiao J, Xiao Y-K, Jin Z-D, He M-Y, Liu C-Q (2013) Boron isotope variations and its geochemical application in nature. Aust J Earth Sci 60:431–447CrossRefGoogle Scholar
  40. Xu Q, Dong Y, Zhu H, Sun A (2015) Separation and analysis of boron isotope in high plant by thermal ionisation mass spectrometry. Int J Anal Chem 2015:6. Article ID 364242.  https://doi.org/10.1155/2015/364242CrossRefGoogle Scholar
  41. Zeebe R, Wolf-Gladow DA (2001) CO2in seawater: equilibrium, kinetics, isotopes. Elsevier, AmesterdamGoogle Scholar
  42. Zeininger H, Heumann KG (1983) Boron isotopic ratio measurement by negative thermal ionization mass spectrometry. Int J Mass Spectrom Ion Process 48:377–380CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
  2. 2.Laboratoire de Géologie de Lyon, LGL-TPE, CNRS UMR 5276Université Claude Bernard Lyon 1 and Institut Universitaire de FranceLyonFrance
  3. 3.Department of Geology and GeophysicsWoods Hole Oceanographic InstitutionWood HoleUSA
  4. 4.Institut für GeowissenschaftenGoethe-Universität FrankfurtFrankfurt am MainGermany