Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White


  • Gray E. BeboutEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_221

Element Data

Atomic Symbol: Cs

Atomic Number: 55

Atomic Weight: 132.90545 u

Isotopes and Abundances: 133Cs, ~100%

1 Atm Melting Point: 28.5 °C

1 Atm Boiling Point: 670.8 °C

Common Valences: 1+

Ionic Radii: 12-fold: 188 pm

Pauling Electronegativity: 0.79

First Ionization Energy: 375.4 kJ/mol

Chondritic (CI) Abundance: 0.188 ppm

Silicate Earth Abundance: 7.7 ppb

Crustal Abundance: 2 ppm

Seawater Abundance: 2 nmol/kg

Core Abundance: ~0


Caesium, a reactive silvery-gold metal belonging to the group IA on the periodic table, is one of the alkali elements and considered as a “lithophile” element as defined by Goldschmidt. Caesium, atomic number 55, has a standard atomic weight of 132.90545 and an electronic configuration of [Xe]6 s1. The lone 6 s electron is relatively easily removed; this first ionization potential of Cs is 375.4 kJ/mol. Caesium is highly ionic in character and the ionic radius of Cs1+is 188 pm in 12-fold coordination. Caesium has a 1 atm melting point of 28.5...

This is a preview of subscription content, log in to check access.


  1. Bea F, Montero P (1999) Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphismand partial melting ofmetapelites in the lower crust: an example from the Kinzigite formation of Ivrea-Verbano, NW Italy. Geochim Cosmochim Acta 63:1133–1153CrossRefGoogle Scholar
  2. Bebout GE (2014) 4.20. Chemical and isotopic cycling in subduction zones. In: Rudnick RL (ed) Treatise on geochemistry: the crust, vol 4, 2nd edn. Elsevier, Amsterdam, pp 703–747CrossRefGoogle Scholar
  3. Bebout GE, Ryan JG, Leeman WP, Bebout AE (1999) Fractionation of trace elements during subduction-zone metamorphism: impact of convergent margin thermal evolution. Earth Planet Sci Lett 171:63–81CrossRefGoogle Scholar
  4. Bebout GE, Bebout AE, Graham CM (2007) Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Chem Geol 239:284–304CrossRefGoogle Scholar
  5. Bebout GE, Agard P, Kobayashi K, Moriguti T, Nakamura E (2013) Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: SIMS evidence from Western Alps HP/UHP suites. Chem Geol 342:1–20CrossRefGoogle Scholar
  6. Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Inside the subduction factory, Geophysical Monograph, vol 138. American Geophysical Union, Washington, DC, pp 23–45CrossRefGoogle Scholar
  7. Fujiwara T (2013) Cesium uptake in rice: possible transporter, distribution, and variation, Chapter 4. In: Nakanishi TM, Tanoi K (eds) Agricultural implications of the Fukushima nuclear accident. Springer, New York, pp 29–35CrossRefGoogle Scholar
  8. Hofmann AW (1988) Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314CrossRefGoogle Scholar
  9. Hofmann AW, White WM (1982) Ba, Rb, and Cs in the Earth’s mantle. Z Naturforsch A 38(2):256–266Google Scholar
  10. Lodders K, Palme H, Gail HP (2009) Abundances of the elements in the solar system, Chapter 4.4. In: Trümper JE (ed) Landolt Börnstein, new series, vol VI/4B. Springer, Berlin/Heidelberg/New York, pp 560–630Google Scholar
  11. McDonough WF (2003) Compositional model for the Earth’s core. In: Carlson RW (ed) Treatise on geochemistry: the mantle and core, vol 2, 1st edn. Elsevier, Amsterdam, pp 547–568CrossRefGoogle Scholar
  12. McDonough WF, Sun S-S, Ringwood AE, Jagoutz E, Hofmann AW (1992) Potassium, rubidium, and caesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim Cosmochim Acta 56:1001–1012CrossRefGoogle Scholar
  13. Palmer MR, Edmond JM (1989) Cesium and rubidium in submarine hydrothermal fluids: evidence for recycling of alkali elements. Earth Planet Sci Lett 95:8–14CrossRefGoogle Scholar
  14. Palya AP, Buick IS, Bebout GE (2011) Storage and mobility of nitrogen in the continental crust: evidence from partially melted metasedimentary rocks at Mount Stafford, North-Central Australia. Chem Geol 281:211–226CrossRefGoogle Scholar
  15. Plank T (2014) 4.17. The chemical composition of subducting sediments. In: Rudnick RL (ed) Treatise on geochemistry: the crust, vol 4, 2nd edn. Elsevier, Amsterdam, pp 607–629CrossRefGoogle Scholar
  16. Rudnick RL, Gao S (2014) 4.1. Composition of the continental crust. In: Rudnick RL (ed) Treatise on geochemistry: the crust, vol 4, 2nd edn. Elsevier, Amsterdam, pp 1–51Google Scholar
  17. White PJ, Broadley MR (2000) Mechanisms of caesium uptake by plants. New Phytol 147:241–256CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesLehigh UniversityBethlehemUSA