Skip to main content

Chalcophile Elements

  • Reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

The term chalcophile (derived from the Greek for copper-loving) was originally introduced by Goldschmidt (1923) to describe the group of elements that are concentrated in sulfide minerals in meteorites. Traditionally this group is defined as the elements Ag, As, Bi, Cd, Cu, Hg, In, Pb, S, Sb, Se, Te, Tl, and Zn. Goldschmidt classified the other elements in meteorites into two groups: those associated with Fe alloy as siderophile (iron loving) and those concentrated in silicates minerals as lithophile (rock loving). Subsequently Goldschmidt applied his classification to the whole Earth and modified it to include two new groups of elements: atmophile, those concentrated in the atmosphere and biophile elements, those concentrated by organic processes (Goldschmidt 1930).

Distribution in Terrestrial Rocks

Whereas the concepts outlined by Goldschmidt are useful, as is evidenced by the fact the terms, siderophile, chalcophile, and lithophile are in daily use by geochemists, the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arevalo R Jr, McDonough WF (2010) Chemical variations and regional diversity observed in MORB. Chem Geol 271:70–85

    Article  Google Scholar 

  • Barnes S-J, Ripley EM (2016) Highly siderophile and strongly chalcophile elements in magmatic ore deposits. Rev Mineral Geochem 81:725–774

    Article  Google Scholar 

  • Dale CW, Burton KW, Greenwood RC, Gannoun A, Wade J, Wood BJ, Pearson DG (2012) Late accretion on the earliest planetesimals revealed by the highly siderophile elements. Science 336:72–75

    Article  Google Scholar 

  • Dare SA, Barnes S-J, Prichard HM, Fisher PC (2011) Chalcophile and platinum-group element (PGE) concentrations in the sulphide minerals from the McCreedy East deposit, Sudbury, Canada, and the origin of PGE in pyrite. Mineral Deposita 46:381–407

    Article  Google Scholar 

  • Goldschmidt VM (1923) Geochemische Verteilungsgesetze der ElementeSkrifter utg. av det Norske Visenskaps-Akademii i Oslo I. Mat-Naturv Klasse 2:1–17

    Google Scholar 

  • Goldschmidt V (1930) Geochemische Verteilungsgesetze und kosmische Häufigkeit der Elemente. Naturwissenschaften 18:999–1013

    Article  Google Scholar 

  • Harvey J, Day JM (2016) Highly siderophile and strongly chalcophile elements in high temperature geochemistry and cosmochemistry. Rev Mineral Geochem 81:774

    Article  Google Scholar 

  • Hinkley TK, Le Cloarec M-F, Lambert G (1994) Fractionation of families of major, minor, and trace metals across the melt-vapor interface in volcanic exhalations. Geochim Cosmochim Acta 58:3255–3263

    Article  Google Scholar 

  • Hu Z, Gao S (2008) Upper crustal abundances of trace elements: a revision and update. Chem Geol 253(3):205–221

    Article  Google Scholar 

  • John DA, Ayuso RA, Barton MD, Blakely RJ, Bodnar RJ, Dilles JH, Gray F, Graybeal FT, Mars JC, McPhee DK, Seal RR, Taylor RD, Vikre PG (2010) Porphyry copper deposit model, chap. B of Mineral deposit models for resource assessment: U.S. Geological Survey Scientific Investigations Report 2010-5070–B, p 169

    Google Scholar 

  • Keith J, Whitney J, Hattori K, Ballantyne G, Christiansen E, Barr D, Cannan T, Hook C (1997) The role of magmatic sulphides and mafic alkaline magmas in the Bingham and Tintic mining districts, Utah. J Petrol 38:1679–1690

    Article  Google Scholar 

  • Ketris M, Yudovich YE (2009) Estimations of Clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals. Int J Coal Geol 78:135–148

    Article  Google Scholar 

  • Large RR, Bull SW, Maslennikov VV (2011) A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ Geol 106:331–358

    Article  Google Scholar 

  • Li Y, Audétat A (2015) Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulphide phases and silicate melt. Geochim Cosmochim Acta 162:25–45

    Article  Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Article  Google Scholar 

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J Geophys Res 112:B03211

    Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Orberger B, Pasava J, Gallien JP, Daudin L, Pinti DL (2003) Biogenic and abiogenic hydrothermal sulphides: controls of rare metal distribution in black shales (Yukon Territories, Canada). J Geochem Explor 78:559–563

    Article  Google Scholar 

  • Patten C, Barnes S-J, Mathez EA, Jenner FE (2013) Partition coefficients of chalcophile elements between sulphide and silicate melts and the early crystallization history of sulphide liquid: LA-ICP-MS analysis of MORB sulphide droplets. Chem Geol 358:170–188

    Article  Google Scholar 

  • Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev 40:1–26

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64

    Google Scholar 

  • Slack JF, Selby D, Dumoulin JA (2015) Hydrothermal, biogenic, and seawater components in metalliferous black shales of the Brooks Range, Alaska: synsedimentary metal enrichment in a carbonate ramp setting. Econ Geol 110:653–675

    Article  Google Scholar 

  • Xu L, Lehmann B, Mao J (2013) Seawater contribution to polymetallic Ni–Mo–PGE–Au mineralization in early Cambrian black shales of South China: evidence from Mo isotope, PGE, trace element, and REE geochemistry. Ore Geol Rev 52:66–84

    Article  Google Scholar 

  • Zelenski ME, Fischer TP, de Moor JM, Marty B, Zimmermann L, Ayalew D, Nekrasov AN, Karandashev VK (2013) Trace elements in the gas emissions from the Erta Ale volcano, Afar, Ethiopia. Chem Geol 357:95–116

    Article  Google Scholar 

  • Zientek ML, Likhachev AP, Kunilov VE, Barnes S-J, Meier AL, Carlson RR, Briggs PH, Fries TL, Adrian BM (1994) Cumulus processes and the composition of magmatic ore deposits: examples from the Talnakh District, Russia. In: Lightfoot PC, Naldrett AJ (eds) Proceedings of the Sudbury-Noril’sk symposium, Ontario Geological Survey, Special publication, vol 5, Ontario, pp 373–392

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah-Jane Barnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Barnes, SJ. (2018). Chalcophile Elements. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_220

Download citation

Publish with us

Policies and ethics