Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White


  • Xingcheng LiuEmail author
  • Xiaolin XiongEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_216

Element Data

Atomic Symbol: Cu

Atomic Number: 29

Atomic Weight: 63.546 u

Isotopes and Abundances: 63Cu 69.15%, 65Cu 30.85%

1 Atm Melting Point: 1084.6 °C

1 Atm Boiling Point: 2562 °C

Common Valences: 2+, 1+

Ionic Radii: 1+: fourfold: 60 pm, sixfold: 77 pm; 2+: Fourfold: 57 pm, sixfold: 73 pm

Pauling Electronegativity: 1.9

First Ionization Energy: 745.5 kJ mol−1

Chondritic (CI) Abundance: 131 ppm

Silicate Earth Abundance: 20–30 ppm

Crustal Abundance: 27 ppm

Seawater Abundance: 0.4–5 nmol/kg

Core Abundance: 125 ppm


Copper (Cu) is a reddish metal with an atomic number 29, standard atomic weight of 63.546, and melting point of 1357.8 K at 1 atm. It was moderately volatile during the Earth formation by accretion of solid material condensed from the solar nebula. As a siderophile element, it partitioned into the core during the separation of metallic core from molten silicate mantle. In the silicate Earth, it behaves as a chalcophile element and usually forms stable sulfides;...

This is a preview of subscription content, log in to check access.


  1. Audetat A, Pettke T (2006) Evolution of a porphyry-Cu mineralized magma system at Santa Rita, New Mexico (USA). J Petrol 47(10):2021–2046CrossRefGoogle Scholar
  2. Audétat A, Simon A (2012) Magmatic controls on porphyry copper deposits. Soc Econ Geol Spec Publ 16:573–618Google Scholar
  3. Berry AJ, Hack AC, Mavrogenes JA, Newville M, Sutton SR (2006) A XANES study of Cu speciation in high-temperature brines using synthetic fluid inclusions. Am Mineral 91(11–12):1773–1782CrossRefGoogle Scholar
  4. Bruland KW, Middag R, Lohan MC (2014) 8.2 – controls of trace metals in seawater. In: Turekian HDHK (ed) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 19–51CrossRefGoogle Scholar
  5. Doebrich J (2009) Copper–A metal for the ages: U.S. Geological Survey fact sheet 2009–3031, 4 p. Available at http://pubs.usgs.gov/fs/2009/3031/
  6. Fellows SA, Canil D (2012) Experimental study of the partitioning of Cu during partial melting of Earth’s mantle. Earth Planet Sci Lett 337:133–143CrossRefGoogle Scholar
  7. Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21(21):R877–R883CrossRefGoogle Scholar
  8. Gaillardet J, Viers J, Dupré B. 7.7 – trace elements in river waters. In: Turekian HDHK (ed) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 195–235CrossRefGoogle Scholar
  9. Kiseeva ES, Wood BJ (2013) A simple model for chalcophile element partitioning between sulphide and silicate liquids with geochemical applications. Earth Planet Sci Lett 383:68–81CrossRefGoogle Scholar
  10. Lee C-TA, Luffi P, Chin EJ, Bouchet R, Dasgupta R, Morton DM, Le Roux V, Yin Q-Z, Jin D (2012) Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 336(6077):64–68CrossRefGoogle Scholar
  11. Li Y, Audétat A (2012) Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet Sci Lett 355:327–340CrossRefGoogle Scholar
  12. Li Y, Audétat A (2015) Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt. Geochim Cosmochim Acta 162:25–45CrossRefGoogle Scholar
  13. Liu X, Xiong X, Audétat A, Li Y, Song M, Li L, Sun W, Ding X (2014) Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions. Geochim Cosmochim Acta 125:1–22CrossRefGoogle Scholar
  14. Liu X, Xiong X, Audetat A, Li Y (2015) Partitioning of Cu between mafic minerals, Fe-Ti oxides and intermediate to felsic melts. Geochim Cosmochim Acta 151:86–102CrossRefGoogle Scholar
  15. Mungall J, Brenan J (2014) Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochim Cosmochim Acta 125:265–289CrossRefGoogle Scholar
  16. Pokrovski GS, Borisova AY, Bychkov AY (2013) Speciation and transport of metals and metalloids in geological vapors. Rev Mineral Geochem 76(1):165–218CrossRefGoogle Scholar
  17. Simon AC, Ripley EM (2011) The role of magmatic sulfur in the formation of ore deposits. Rev Mineral Geochem 73(1):513–578CrossRefGoogle Scholar
  18. White WM (2013) Geochemistry. Wiley-Blackwell, Oxford, UKGoogle Scholar
  19. Zajacz Z, Candela PA, Piccoli PM, Wälle M, Sanchez-Valle C (2012) Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation. Geochim Cosmochim Acta 91:140–159CrossRefGoogle Scholar
  20. Zajacz Z, Candela PA, Piccoli PM, Sanchez-Valle C, Wälle M (2013) Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas. Geochim Cosmochim Acta 112:288–304CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina