Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Carbon

  • Adrian JonesEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_174

Element Data

Atomic Symbol: C

Atomic Number: 6

Atomic Weight: 12.0107

Isotopes and Abundances: 12C: ~98.89%, 13C: ~1.11%, 14C ~10−12

Atm Melting Point*: 3550 °C

1 Atm Boiling Point*: 4492 °C (101 kPa)

Common Valences: −4, 0, +2, +4

Ionic Radii: 30 pm (4+)

Pauling Electronegativity: 2.5

First Ionization Energy: 1086 kJmol−1

Chondritic (CI) Abundance: 3.65 wt%

Silicate Earth Abundance: 50–500 ppm

Crustal Abundance: ~1800 ppm

Seawater Abundance: ~28 ppm

Core Abundance: unknown 0.2–2%

Properties

Carbon has three isotopes, two are stable 12C (98.89%) and 13C (1.11%) plus a radioactive isotope 14C (~10−12). The systematics of carbon isotopes yield important information about their environments and are discussed separately (Cross reference #1). 12C is the standard which defines mass number 12 containing 6 protons, 6 neutrons, and 6 electrons.

The melting point of carbon is extremely high and varies with pressure*; in a carbon arc, it sublimes above ~5,530 °C, which is higher in temperature...

This is a preview of subscription content, log in to check access.

References

  1. Berner RA (2004) The phanerozoic carbon cycle. Oxford University Press, Oxford, 158 ppGoogle Scholar
  2. Cartigny P (2005) Stable isotopes and the origin of diamond. Elements 1:79–84CrossRefGoogle Scholar
  3. Colwell FS, D’Hondt S (2013) Nature and extent of the deep biosphere. In: Hazen RM, Jones AP, Baross JA (eds) Carbon in Earth. Review in mineral and geochemistry, vol 75, pp 547–574CrossRefGoogle Scholar
  4. Garai J, Haggerty SE, Rekhi S, Chance M (2006) Infrared absorption investigations confirm the extraterrestrial origin of carbonado diamonds. Astrophys J 653:L153–L156CrossRefGoogle Scholar
  5. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:181–191CrossRefGoogle Scholar
  6. Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry JM, McCoy TJ, Sverjensky DA, Yang H (2008) Mineral evolutions. Am Mineral 93:1693–1720CrossRefGoogle Scholar
  7. Hazen RM, Downs RT, Jones AP, Kah L (2013) Carbon mineralogy and crystal chemistry. In: Hazen RM, Jones AP, Baross JA (eds) Carbon in Earth. Review in mineral and geochemistry, vol 75, pp 7–46CrossRefGoogle Scholar
  8. Jones AP, McMillan PF, Salzmann CG, Alvaro M, Nestola F, Prencipe M, Dobson D, Hazael R, Moore M (2016) Structural characterisation of natural diamond shocked to 60 GPa; implications for earth and planetary sciences. Lithos 265:214–221CrossRefGoogle Scholar
  9. Jones AP, Genge M, Carmody L (2013) Carbonate melts and carbonatites. In: Hazen RM, Jones AP, Baross JA (eds) Carbon in Earth. Review in mineralogy and Geochemistry, vol 75, pp 289–322CrossRefGoogle Scholar
  10. Kelemen PB, Manning CE (2015) Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci 112:E3997–E4006CrossRefGoogle Scholar
  11. Lazor P, Shen G, Saxena SK (1992) Laser-heated diamond anvil cell experiments at high pressure: melting curve of nickel up to 700 kbar. Phys Chem Miner 20:86–90Google Scholar
  12. Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on earth. Earth Planet Sci Lett 313–314:56–66CrossRefGoogle Scholar
  13. Max MD (2003) Natural gas hydrate in oceanic and permafrost environments. Kluwer Academic, DordrechtGoogle Scholar
  14. Ni H, Keppler H (2013) Carbon in silicate melts. In: Hazen RM, Jones AP, Baross JA (eds) Carbon in Earth. Review in mineral and geochemistry, vol 75, pp 251–287CrossRefGoogle Scholar
  15. Oganov AR, Hemley RJ, Hazen RM, Jones AP (2013) Structure, bonding, and mineralogy of carbon at extreme conditions. In: Hazen RM, Jones AP, Baross JA (eds) Carbon in Earth. Review in mineral and geochemistry, vol 75, pp 47–77CrossRefGoogle Scholar
  16. Reeder RJ (ed) (1983) Carbonates: mineralogy and chemistry. Reviews in Mineralogy, vol 11Google Scholar
  17. Roy R (1987) Diamonds at low pressure. Nature 325:17–18CrossRefGoogle Scholar
  18. Schrenk MO, Brazelton WJ, Lang SQ (2013) Serpentinization, carbon, and deep life. In: Hazen RM, Jones AP, Baross JA (eds) Carbon in Earth. Review in mineral and geochemistry, vol 75 pp 575–606CrossRefGoogle Scholar
  19. Sephton MA (2002) Organic compounds in carbonaceous chondrites. Nat Prod Rep 19:292–311CrossRefGoogle Scholar
  20. Sephton MA, Hazen RM (2013) On the origins of deep hydrocarbons. In: Hazen RM, Jones AP, Baross JA (eds) Carbon in Earth. Review in mineral and geochemistry, vol 75, pp 449–465CrossRefGoogle Scholar
  21. Wood BJ, Li J, Shahar A (2013) Carbon in the core: its influence on the properties of core and mantle. In: Hazen RM, Jones AP, Baross JA (eds) Carbon in Earth. Review in mineral and geochemistry, vol 75, pp 231–250CrossRefGoogle Scholar
  22. Zhang YZ, Zindler A (1993) Distribution and evolution of carbon and nitrogen in earth. Earth Planet Sci Lett 117:331–345CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity College LondonLondonUK