Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Density Functional Theory

  • David A. DixonEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_17

Definition

Density functional theory is an approach to solving the Schrödinger equation for the motion of electrons in molecules (as well as atoms) based on the concept that the energy is a functional of the density. In principle, it is an exact theory if the density and the functional are known. In practice, the exact form of the functional is not known. This method is another way to solve the Schrödinger equation for the electronic motion of electrons in atoms and molecules in addition to molecular orbital theory. It has been extensively applied to both molecules and solids and is probably the most common method in use today for electronic structure calculations.

Overview

Density functional theory (DFT) can be used to determine the ground state energy of the system as well as to predict a wide range of properties including structures, spectra, energetics, and charge distributions (Parr and Wang 1989; Dreizler and Gross 1990; Labanowski and Andzelm 1991; Seminario and Politzer 1995;...
This is a preview of subscription content, log in to check access.

References

  1. Adamo C, Barone V (1997) Toward reliable adiabatic connection models free from adjustable parameters. Chem Phys Lett 274:242–250CrossRefGoogle Scholar
  2. Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675CrossRefGoogle Scholar
  3. Autschbach J, Ziegler T (2004) Calculation of heavy-nucleus chemical shifts: relativistic all-electron methods. In: Kaupp M, Buhl M, Malkin VG (eds) Calculation of NMR and EPR parameters: theory and application. Wiley-VCH & Co, Weinheim, pp 249–264CrossRefGoogle Scholar
  4. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464CrossRefGoogle Scholar
  5. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  6. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  7. Becke AD (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104:1040–1046CrossRefGoogle Scholar
  8. Becke AD (1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J Chem Phys 107:8554–8560CrossRefGoogle Scholar
  9. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  10. Boese AD, Handy NC (2001) A new parametrization of exchange-correlation generalized gradient approximation functionals. J Chem Phys 114:5497–5503CrossRefGoogle Scholar
  11. Boese AD, Handy NC (2002) New exchange-correlation density functionals: the role of the kinetic-energy density. J Chem Phys 116:9559–9969CrossRefGoogle Scholar
  12. Boese AD, Martin JML (2004) Development of density functionals for thermochemical kinetics. J Chem Phys 121:3405–3416CrossRefGoogle Scholar
  13. Boese AD, Doltsinis NL, Handy NC, Sprik M (2000) New generalized gradient approximation functionals. J Chem Phys 112:1670–1678CrossRefGoogle Scholar
  14. Burke K, Perdew JP, Wang Y (1997) Derivation of a generalized gradient approximation: the PW91 density functional. In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: recent progress and new directions. Plenum, New York, pp 81–121Google Scholar
  15. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449CrossRefGoogle Scholar
  16. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106. (15pages)CrossRefGoogle Scholar
  17. Cohen AJ, Handy NC (2001) Dynamic correlation. Mol Phys 99:607–615CrossRefGoogle Scholar
  18. De Proft F, Ayers PW, Geerlings P (2014) Chapter. 7. The conceptual density functional theory perspective of bonding. In: Frenking G, Shaik S (eds) The chemical bond: fundamental aspects of chemical bonding. Wiley, New York, pp 233–265CrossRefGoogle Scholar
  19. Dreizler RM, Gross EKU (1990) Density functional theory. An approach to the quantum many-body problem. Springer, BerlinGoogle Scholar
  20. Ernzerhof M, Perdew JP (1998) Generalized gradient approximation to the angle- and system-averaged exchange hole. J Chem Phys 109:3313–3320CrossRefGoogle Scholar
  21. Geerlings P, De Proft F, Langenaecker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873CrossRefGoogle Scholar
  22. Geerlings P, Fias S, Boisdenghien Z, De Proft F (2014) Conceptual DFT: chemistry from the linear response function. Chem Soc Rev 43:4989–5008CrossRefGoogle Scholar
  23. Gill PMW (1996) A new gradient-corrected exchange functional. Mol Phys 89:433–445CrossRefGoogle Scholar
  24. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  25. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104CrossRefGoogle Scholar
  26. Grossman JC, Rohlfing M, Mitas L, Louie SG, Cohen ML (2001) High accuracy many-body calculational approaches for excitations in molecules. Phys Rev Lett 86:472–475CrossRefGoogle Scholar
  27. Hamprecht FA, Cohen A, Tozer DJ, Handy NC (1998) Development and assessment of new exchange-correlation functionals. J Chem Phys 109:6264–6271CrossRefGoogle Scholar
  28. Handy NC, Cohen AJ (2001) Left-right correlation energy. Mol Phys 99:403–412CrossRefGoogle Scholar
  29. Heyd J, Scuseria GE (2004) Assessment and validation of a screened Coulomb hybrid density functional. J Chem Phys 120:7274–7280CrossRefGoogle Scholar
  30. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215. Erratum: J Chem Phys 2006, 124, 219906CrossRefGoogle Scholar
  31. Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys 123:174101. (8 pages)CrossRefGoogle Scholar
  32. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  33. Hujo W, Grimme S (2011) Performance of the van der Waals density functional VV10 and (hybrid) GGA variants for thermochemistry and noncovalent interactions. J Chem Theory Comput 7:3866–3871CrossRefGoogle Scholar
  34. Hujo W, Grimme S (2013) Performance of non-local and atom-pairwise dispersion corrections to DFT for structural parameters of molecules with noncovalent interactions. J Chem Theory Comput 9:308–315CrossRefGoogle Scholar
  35. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) Long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540–3544CrossRefGoogle Scholar
  36. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  37. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106. (4 pages)CrossRefGoogle Scholar
  38. Kudin KN, Scuseria GE, Martin RL (2002) Hybrid density-functional theory and the insulating gap of UO2. Phys Rev Lett 89:266402. (4 pages)CrossRefGoogle Scholar
  39. Labanowski J, Andzelm JW (eds) (1991) Density functional methods in chemistry. Springer, New YorkGoogle Scholar
  40. Laird BB, Ross RB, Ziegler T (eds) (1996) Chemical applications of density functional theory, ACS symposium series, vol 629. American Chemical Society, WashingtonGoogle Scholar
  41. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  42. Mardirossian N, Head-Gordon M (2014) wB97X-V: a 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys Chem Chem Phys 16:9904–9924CrossRefGoogle Scholar
  43. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601–659CrossRefGoogle Scholar
  44. Parr RG, Wang W (1989) Density-functional theory of atoms and molecules. Oxford Science, New YorkGoogle Scholar
  45. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  46. Perdew JP, Schmidt K (2001) Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc 577:1–20CrossRefGoogle Scholar
  47. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron gas correlation energy. Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  48. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. Errata. Phys Rev Lett 1997, 78, 1396CrossRefGoogle Scholar
  49. Perdew JP, Kurth S, Zupan A, Blaha P (1999) Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation. Phys Rev Lett 82:2544–2547CrossRefGoogle Scholar
  50. Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE, Csonka GI (2005) Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J Chem Phys 123:062201. (9 pages)CrossRefGoogle Scholar
  51. Prodan ID, Scuseria GE, Martin RL (2007) Covalency in the actinide dioxides: systematic study of the electronic properties using screened hybrid density functional theory. Phys Rev B 76:033101. (4 pages)CrossRefGoogle Scholar
  52. Schmider HL, Becke AD (1998) Optimized density functionals from the extended G2 test set. J Chem Phys 108:9624–9631CrossRefGoogle Scholar
  53. Schreckenbach G, Ziegler T (1995) Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory. J Phys Chem 99:606–611CrossRefGoogle Scholar
  54. Schreckenbach G, Ziegler T (1996) The calculation of NMR shielding tensors based on density functional theory and the frozen-core approximation. Int J Quantum Chem 60:753–766CrossRefGoogle Scholar
  55. Schreckenbach G, Ziegler T (1997) Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes. Int J Quantum Chem 61:899–918CrossRefGoogle Scholar
  56. Scuseria GE, Staroverov VN (2005) Chapter 24. Development of approximate exchange-correlation functionals. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first 40 years. Elsevier, Amsterdam, pp 669–724CrossRefGoogle Scholar
  57. Seminario JM, Politzer P (eds) (1995) Modern density functional theory: a tool for chemistry. Elsevier, AmsterdamGoogle Scholar
  58. Sholl DS, Steckel JA (2009) Density functional theory: a practical introduction. Wiley, New YorkCrossRefGoogle Scholar
  59. Slater JC (1974) Quantum theory of molecules and solids. McGraw-Hill, New York, p 4Google Scholar
  60. Springborg M (ed) (1997) Density-functional methods in chemistry and materials science. Wiley, ChichesterGoogle Scholar
  61. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys 119:12129–12137CrossRefGoogle Scholar
  62. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401. (4 pages)CrossRefGoogle Scholar
  63. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895CrossRefGoogle Scholar
  64. Voorhis TV, Scuseria GE (1997) Exchange energy functionals based on the density matrix expansion of the Hartree-Fock exchange term. Mol Phys 92:601–608CrossRefGoogle Scholar
  65. Voorhis TV, Scuseria GE (1998) A novel form for the exchange-correlation energy functional. J Chem Phys 109:400–410; Erratum 2008, 129, 219901CrossRefGoogle Scholar
  66. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211CrossRefGoogle Scholar
  67. Vydrov OA, Scuseria GE (2006) Assessment of a long range corrected hybrid functional. J Chem Phys 125:234109. (9 pages)CrossRefGoogle Scholar
  68. Vydrov OA, Van Voorhis T (2009) Nonlocal van der Waals density functional made simple. Phys Rev Lett 103:063004. (4 pages)CrossRefGoogle Scholar
  69. Vydrov OA, Van Voorhis T (2010) Nonlocal van der Waals density functional: the simpler the better. J Chem Phys 133:244103. (9 pages)CrossRefGoogle Scholar
  70. Wilson PJ, Bradley TJ, Tozer DJ (2001) Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials. J Chem Phys 115:9233–9242CrossRefGoogle Scholar
  71. Wolff SK, Ziegler T (1998) Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling. J Chem Phys 109:895–905CrossRefGoogle Scholar
  72. Wolff SK, Ziegler T, van Lenthe E, Baerends EJ (1999) Density functional calculations of nuclear magnetic shieldings using the zeroth-order regular approximation (ZORA) for relativistic effects: ZORA nuclear magnetic resonance. J Chem Phys 110:7689–7698CrossRefGoogle Scholar
  73. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260CrossRefGoogle Scholar
  74. Xu X, Goddard WA III (2004) The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc Natl Acad Sci USA 101:2673–2677CrossRefGoogle Scholar
  75. Yanai T, Tew D, Handy N (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  76. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of AlabamaTuscaloosaUSA