Skip to main content

Ab Initio Calculations

  • Reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 1036 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler TB, Knizia G, Werner H-J (2007) A simple and efficient CCSD(T)-F12 approximation. J Chem Phys 127:221106. (4 pages)

    Article  Google Scholar 

  • Almlöf J, Taylor PR (1991) Atomic natural orbital (ANO) basis sets for quantum chemical calculations. Adv Quantum Chem 22:301–373

    Article  Google Scholar 

  • Bartlett RJ, Musial M (2007) Coupled-cluster theory in quantum chemistry. Rev Mod Phys 79:291–352

    Article  Google Scholar 

  • Borden WT, Handy NC, Schaefer HF, Davidson ER (2002) Molecular quantum mechanics: the right answer for the right reason: the proceedings of an international conference in Honor of Professor Ernest R. Davidson, held at the University of Washington, Seattle, 21–25 July 2001. Taylor & Francis, London

    Google Scholar 

  • Dewar MJS, Thiel W (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters. J Am Chem Soc 99:4899–4907

    Article  Google Scholar 

  • Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  Google Scholar 

  • Dixon DA, Feller D, Peterson KA (2012) A practical guide to reliable first principles computational thermochemistry predictions across the periodic table. In: Ralph AW (ed) Annual reports in computational chemistry, vol 8. Elsevier, Amsterdam, pp 1–28

    Google Scholar 

  • Dolg M (ed) (2015) Computational methods in lanthanide and actinide chemistry. Wiley, New York

    Google Scholar 

  • Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  Google Scholar 

  • EMSL basis set library: https://bse.pnl.gov/bse/portal

  • Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17:1571–1586

    Article  Google Scholar 

  • Feller D (2015) A statistical electronic structure calibration study of the CCSD(T*)- F12b method for atomization energies. J Phys Chem A 119:7375–7387

    Article  Google Scholar 

  • Feller D, Peterson KA, Hill JG (2011) On the effectiveness of CCSD(T) complete basis set extrapolations for atomization energies. J Chem Phys 135:044102. (18 pages)

    Article  Google Scholar 

  • Feller D, Peterson KA, Dixon DA (2012) Further benchmarks of a composite, convergent, statistically calibrated coupled cluster based approach for thermochemical and spectroscopic studies. Mol Phys 110:2381–2399

    Article  Google Scholar 

  • Foresman JB, Frisch Æ (2015) Exploring chemistry with electronic structure methods, 3rd edn. Gaussian, Inc., Wallingford

    Google Scholar 

  • Grant GH, Richards WG (1995) Computational chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Gutowski KE, Dixon DA (2006) Predicting the energy of the water exchange reaction and free energy of solvation for the uranyl ion in aqueous solution. J Phys Chem A 110:8840–8856

    Article  Google Scholar 

  • Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley-Interscience, New York

    Google Scholar 

  • Helgaker T, Klopper W, Tew DP (2008) Quantitative quantum chemistry. Mol Phys 106:2107–2143

    Article  Google Scholar 

  • Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56:537–554

    Article  Google Scholar 

  • Hess BA, Dolg M (2002) Relativistic quantum chemistry with pseudopotentials and transformed Hamiltonian, Wiley series in theoretical chemistry, vol 57. Wiley, Chichester

    Google Scholar 

  • Hirst DM (1990) A computational approach to chemistry. Blackwell Scientific, Oxford

    Google Scholar 

  • Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806

    Article  Google Scholar 

  • Klamt A (2005) Quantum chemistry to fluid phase thermodynamics and drug design. Elsevier, Amsterdam

    Google Scholar 

  • Klamt A, Schümann G (1993) A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  • Knizia G, Adler TB, Werner H-J (2009) Simplified CCSD(T)-F12 methods: theory and benchmarks. J Chem Phys 130:054104. (20 pages)

    Article  Google Scholar 

  • Küchle W, Dolg M, Stoll H, Preuss H. Pseudopotentials of the Stuttgart/Dresden Group 1998 (Revision: Tue Aug 11, 1998). http://www.theochem.uni-stuttgart.de/pseudopotentiale

  • Kutzelnigg W (1985) The r12-dependent terms in the wave function as closed sums of partial wave amplitudes for large l. Theor Chim Acta 68:445–469

    Article  Google Scholar 

  • Levine I (2014) Quantum chemistry, 7th edn. Pearson, New York

    Google Scholar 

  • Lowe JP, Peterson KA (2006) Quantum chemistry, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  Google Scholar 

  • Møller C, Plesset MS (1934) Note on the approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  • Neese F, Valeev EF (2011) Revisiting the atomic natural orbital approach for basis sets: robust systematic basis sets for explicitly correlated and conventional correlated ab initio methods? J Chem Theory Comput 7:33–43

    Article  Google Scholar 

  • Peterson K (2007) A. Gaussian basis sets exhibiting systematic convergence to the complete basis set limit, Chapter 11. In: Spellmeyer DC, Wheeler RA (eds) Annual reports in computational chemistry, vol 3. Elsevier, Amsterdam, pp 195–206

    Google Scholar 

  • Peterson KA (2015) Correlation consistent basis sets for actinides; I. The Th and U atoms. J Chem Phys 142:074105. (14 pages)

    Article  Google Scholar 

  • Peterson KA. http://tyr0.chem.wsu.edu/~kipeters/basis.html

  • Peterson KA, Feller D, Dixon DA (2012a) Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges. Theor Chem Accounts 131:1–20

    Article  Google Scholar 

  • Peterson KA, Dixon DA, Stoll H (2012b) The use of explicitly correlated methods on XeF6 predicts a C3v minimum with a sterically active, free valence electron pair on Xe. J Phys Chem A 116:9777–9782

    Article  Google Scholar 

  • Pople JA, Binkley JS, Seeger R (1976) Theoretical models incorporating electron correlation. Int J Quantum Chem Symp 10:1–19

    Article  Google Scholar 

  • Pykkö P, Descleaux JP (1979) Relativity and the periodic system of elements. Acc Chem Res 12(8):276–281

    Article  Google Scholar 

  • Reiher M (2012) Relativistic Douglas–Kroll–Hess theory. Wiley Interdiscip Rev Comput Mol Sci 2:139–149

    Article  Google Scholar 

  • Rustad JR, Bylaska EJ, Jackson VE, Dixon DA (2010) Calculation of boron-isotope fractionation between B(OH)3(aq) and B(OH)4−(aq). Geochim Cosmochim Acta 74:2843–2850

    Article  Google Scholar 

  • Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045–1052

    Article  Google Scholar 

  • Stewart JJP (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19:1–32

    Article  Google Scholar 

  • Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  Google Scholar 

  • Wilson S (1988) Methods in computational chemistry, Relativistic effects in atoms and molecules, vol 2. Plenum Press, New York

    Google Scholar 

  • Yang J, Hu W, Usvyat D, Matthews D, Schuetz M, Chan GK-L (2014) Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy. Science 345:640–643

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Dixon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dixon, D.A. (2018). Ab Initio Calculations. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_16

Download citation

Publish with us

Policies and ethics