Skip to main content

Biogenic Methane

  • Reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 288 Accesses

Definition

Biogenic methane is generated via a process called microbial methanogenesis, which is uniquely performed by methanogenic Archaea, the methanogens, namely several subbranches of Euryarchaeota on the 16S rRNA-based phylogenetic tree of life, i.e., Methanomicrobiales, Methanosarcinales, Methanococcales, and Methanobacteriales (Pace 2009). Microbial methanogenesis is the main terminal process of subsurface anaerobic organic-matter biodegradation (Head et al. 2003). Therefore, methanogenesis is important in the global carbon cycle, contributing to the terminal mineralization of organic matter. Figure 1 provides a summary of processes (biological and thermochemical) and substrates (organic and inorganic) for methane generation in nature and clarifies associated terminology. Accepted synonyms: microbial methane.

Biogenic Methane, Fig. 1
figure 21 figure 21

Classification and proposed nomenclature of methane according to its process of origin (X-axis) and directly utilized substrates (Y-axis; schematic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291–294

    Article  Google Scholar 

  • Archer D (2007) Methane hydrate stability and anthropogenic climate change. Biogeosci Discuss 2007(4):993–1057, European Geosciences Union

    Article  Google Scholar 

  • Archer DE, Buffett BA, McGuire PC (2012) A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles. Biogeosciences 9:2859–2878

    Article  Google Scholar 

  • Bachu S, Michael K (2003) Possible controls of hydrogeological and stress regimes on the producibility of coalbed methane in Upper Cretaceous-Tertiary strata of the Alberta basin, Canada. AAPG Bull 87:1729–1754

    Article  Google Scholar 

  • Bauchop T, Mountfort DO (1981) Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl Environ Microbiol 42:1103–1110

    Google Scholar 

  • Belopolsky A, Tari G, Craig J, Iliffe J (2012) New and emerging plays in the eastern Mediterranean: an introduction. Pet Geosci 18:371–372

    Article  Google Scholar 

  • Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460

    Article  Google Scholar 

  • Biddle JF, Cardman Z, Mendlovitz H, Albert DB, Lloyd KG, Boetius A, Teske A (2012) Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. Intl Soc Microbiol Ecol J 6:1018–1031

    Google Scholar 

  • Blair CC, D’Hondt S, Spivack AJ, Kingsley RH (2007) Radiolytic hydrogen and microbial respiration in subsurface sediments. Astrobiology 7:951–970

    Article  Google Scholar 

  • Borrel G, O’Toole PW, Harris HMB, Peyret P, Brugere J-F, Gribaldo S (2013) Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol Evol 5:1769–1780

    Article  Google Scholar 

  • Bousquet P, Tyler SC, Peylin P, Van Der Werf GR, Prigent C, Hauglustaine DA, Dlugokencky EJ, Miller JB, Ciais P, White J, Steele LP, Schmidt M, Ramonet M, Papa F, Lathière J, Langenfelds RL, Carouge C, Brunke E-G (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    Article  Google Scholar 

  • Brandt WA, Coplen TB, Vogl J, Rosner M, Prohaska T (2014) Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical report). Pure Appl Chem 86:425–467

    Article  Google Scholar 

  • Camill P (2005) Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Clim Change 68:135–152

    Article  Google Scholar 

  • Carini S, Bano N, LeCleir G, Joye SB (2005) Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environ Microbiol 7:1127–1138

    Article  Google Scholar 

  • Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958

    Article  Google Scholar 

  • Coffin RB, Osburn CL, Plummer RE, Smith JP, Rose PS, Grabowski KS (2015) Deep sediment-sourced methane contribution to shallow sediment organic carbon: Atwater Valley, Texas-Louisiana Shelf, Gulf of Mexico. Energies 8:1561–1583

    Article  Google Scholar 

  • Cokar M, Kallos MS, Huang H, Larter SR, Gates ID (2010) Biogenic gas generation from shallow organic-matter-rich shales. Can Soc Unconv Gas/Soc Petrol Eng 135323, 13p

    Google Scholar 

  • Colwell FS, Boyd S, Delwiche ME, Reed DW, Phelps TJ, Newby DT (2008) Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia Margin. Appl Environ Microbiol 74:3444–3452

    Article  Google Scholar 

  • Conrad R (2005) Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org Geochem 36:739–752

    Article  Google Scholar 

  • Deutzmann JS, Sahina M, Spormanna AM (2015) Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. MBio 6:e00496-15

    Article  Google Scholar 

  • Durham LS (2013) Levant Basin brings potential to new areas. AAPG Explor, May 2013. http://archives.aapg.org/explorer/2013/05may/ace_levant0513.cfm

  • Faiz M, Hendry P (2006) Significance of microbial activity in Australian coal bed methane reservoirs – a review. Bull Can Petrol Geol 54:261–272

    Article  Google Scholar 

  • Ferry JG (1993) Methanogenesis: Ecology, physiology, biochemistry & genetics. Ferry JG (ed). Chapman & Hall, New York, 536p

    Google Scholar 

  • Formolo M, Martini A, Petsch S (2008) Biodegradation of sedimentary organic matter associated with coalbed methane in the Powder River and San Juan Basins, U.S.A. Int J Coal Geol 76:86–97

    Article  Google Scholar 

  • Guan Y, Ngugi DK, Blom J, Ali S, Ferry JG, Stingl U (2014) Draft genome sequence of an obligately methylotrophic methanogen, Methanococcoides methylutens isolated from marine sediment. Genome Announc 2(6):e01184-14

    Article  Google Scholar 

  • Guo H, Zhang J, Han Q, Huang Z, Urynowicz MA, Wang F (2017) Important role of fungi in the production of secondary biogenic coalbed methane in China’s Southern Qinshui Basin. Energy Fuel 31:7197–7207

    Article  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  Google Scholar 

  • Hook SE, Wright A-DG, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010:11, Article ID 945785

    Google Scholar 

  • Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057

    Article  Google Scholar 

  • Hutten TJ, Bongaerts HC, van der Drift C, Vogels GD (1980) Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri. Antonie Van Leeuwenhoek 46:601–610

    Article  Google Scholar 

  • Inagaki F, Hinrichs K-U, Kubo Y et al (2015) Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 349:420–424

    Article  Google Scholar 

  • Ishii S, Kosaka T, Hori K, Hotta Y, Watanabe K (2005) Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl Environ Microbiol 71:7838–7845

    Article  Google Scholar 

  • Izon G, Zerkle AL, Williford KH, Farquhar J, Poulton SW, Claire MW (2017) Biological regulation of atmospheric chemistry en route to planetary oxygenation. Proc Natl Acad Sci U S A 114:E2571–E2579

    Article  Google Scholar 

  • Jacquet B, Strąpoć D, Khan S, Inan Villegas E, Albrecht H, Okoh B, McKinney D (2017) Persistence of biogenic methane and its mixing with thermogenic fluids: observations and consequences. IMOG2017, abstract P216

    Google Scholar 

  • Jin Z, Firoozabadi A (2014) Effect of water on methane and carbon dioxide sorption in clay minerals by Monte Carlo simulations. Fluid Phase Equilib 382:10–20

    Article  Google Scholar 

  • Kemp DB, Coe AL, Cohen AS, Schwark L (2005) Astronomical pacing of methane release in the Early Jurassic period. Nature 437:396–399

    Article  Google Scholar 

  • Kouzuma A, Kato S, Watanabe K (2015) Microbial interspecies interactions: recent findings in syntrophic consortia. Front Microbiol 6:8, Article 477

    Google Scholar 

  • Kouzuma A, Tsutsumi M, Ishii S, Ueno Y, Abe T, Watanabe K (2017) Non-autotrophic methanogens dominate in anaerobic digesters. Nature Sci Rep 7:1510. https://doi.org/10.1038/s41598-017-01752-x

    Article  Google Scholar 

  • Kraev G, Schulze E-D, Yurova A, Kholodov A, Chuvilin E, Rivkina E (2017) Cryogenic displacement and accumulation of biogenic methane in frozen soils. Atmosphere 8:19

    Article  Google Scholar 

  • L’Haridon S, Reysenbach A-L, Banta A, Messner P, Schumann P, Stackebrandt E, Jeanthon C (2003) Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 53:1931–1935

    Article  Google Scholar 

  • Li Y-L, Lin C-M (2010) Exploration methods for late Quaternary shallow biogenic gas reservoirs in the Hangzhou Bay area, eastern China. AAPG Bull 94:1741–1759

    Article  Google Scholar 

  • Lupa B (2010) Functional genomics of methanogens. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 501–508

    Chapter  Google Scholar 

  • Martini AM, Walter LM, McIntosh JC (2008) Identification of microbial and thermogenic gas components from Upper Devonian black shale cores, Illinois and Michigan basins. AAPG Bull 92:327–339

    Article  Google Scholar 

  • Mayhew LE, Ellison ET, McCollom TM, Trainor TP, Templeton AS (2013) Hydrogen generation from low-temperature water–rock reactions. Nat Geosci 6:478–484

    Article  Google Scholar 

  • Mayumi D, Mochimaru H, Tamaki H, Yamamoto K (2016) Methane production from coal by a single methanogen. Science 354:222–225

    Article  Google Scholar 

  • Milkov AV (2005) Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org Geochem 36:681–702

    Article  Google Scholar 

  • Mills DJ, Vitt S, Strauss M, Shima S, Vonck J (2013) De novo modeling of the F420-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. Elife 2:e00218. https://doi.org/10.7554/eLife.00218

  • Moran JJ, House CH, Vrentas JM, Freeman KH (2008) Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans. Appl Environ Microbiol 74:540–542

    Article  Google Scholar 

  • Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, Sherwood Lollar B, Pratt ML, Boice E, Southam G, Wagner G, Baker BJ, Pfiffner SM, Lin L-H, Onstott TC (2005) Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault. Appl Environ Microbiol 71:8773–8763

    Article  Google Scholar 

  • Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565–576

    Article  Google Scholar 

  • Pang X, Zhao W, Su A, Li S (2005) Geochemistry and origin of the giant Quaternary shallow gas accumulations in the eastern Qaidam Basin, NW China. Org Geochem 36:1636–1649

    Article  Google Scholar 

  • Pashin JC (2007) Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: key to understanding reservoir performance and environmental issues. Appl Geochem 22:2257–2272

    Article  Google Scholar 

  • Paterek JR, Smith PH (1988) Methanophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int J Syst Bacteriol 38:122–123

    Article  Google Scholar 

  • Pinyo K, Wooding S, Masdakom M (2016) Unlocking the mystery of Zawtika biogenic gas accumulations, offshore Gulf of Moattama, Myanmar. International petroleum technology conference, Bangkok, 14–16 Nov 2016, IPTC-18832-MS, 21p

    Google Scholar 

  • Prinzhofer A, Pernaton E (1997) Isotopically light methane in natural gas: bacterial imprint or diffusive fractionation? Chem Geol 142:193–200

    Article  Google Scholar 

  • Qiang J, Fuqi C, Yang G, Liang C (2016) Restricted access genetic types and accumulation models for biogenic gases in Bohai Bay Basin, eastern China. Bull Can Petrol Geol 64:24–46

    Article  Google Scholar 

  • Rao H, Schmidt LC, Bonin J, Robert M (2017) Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature. https://doi.org/10.1038/nature23016

  • Rotaru A-E, Malla Shrestha P, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605

    Article  Google Scholar 

  • Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2016) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage 5:81–91

    Article  Google Scholar 

  • Schneider F, Dubille M, Montadert L (2016) Modeling of microbial gas generation: application to the eastern Mediterranean “Biogenic Play”. Geol Acta 14:403–417

    Google Scholar 

  • Segarra KEA, Schubotz F, Samarkin V, Yoshinaga MY, Hinrichs K-U, Joye SB (2015) High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nat Commun 6, Article 7477

    Google Scholar 

  • Sherwood Lollar B, Frape SK, Weise SM, Fritz P, Macko SA, Welhan JA (1993) Abiogenic methanogenesis in crystalline rocks. Geochim Cosmochim Acta 57:5087–5097

    Article  Google Scholar 

  • Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK (2004) H2-rich fluids from serpentinization: geochemical and biotic implications. Proc Natl Acad Sci U S A 101:12818–12823

    Article  Google Scholar 

  • Strąpoć D, Picardal FW, Turich C, Schaperdoth I, Macalady JL, Lipp JS, Lin Y-S, Ertefai TF, Schubotz F, Hinrichs K-U, Mastalerz M, Schimmelmann A (2008) Methane-producing microbial community in a coal bed of the Illinois basin. Appl Environ Microbiol 74:2424–2432

    Article  Google Scholar 

  • Strąpoć D, Ashby M, Wood L, Levinson R, Huizinga B (2010a) Significant contribution of methyl/methanol-utilizing methanogenic pathway in a subsurface biogas environment. In: Whitby C, Skovhus TL (eds) Applied microbiology and molecular biology in oil field systems, Part 4. Springer, Netherlands, pp 211–216

    Google Scholar 

  • Strąpoć D, Mastalerz M, Drobniak A, Schimmelmann A, Hasenmueller NR (2010b) Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian – Mississippian), eastern Illinois basin. AAPG Bull 94:1713–1740.

    Article  Google Scholar 

  • Strąpoć D, Mastalerz M, Dawson K, Macalady JL, Callaghan AV, Wawrik B, Turich C, Ashby M (2011) Biogeochemistry of microbial coal-bed methane. Annu Rev Earth Planet Sci 39:617–656

    Article  Google Scholar 

  • Strąpoć D, Jacquet B, Torres O, Khan RMS, Inan Villegas E, Albrecht H, Okoh B, McKinney D (2017) Deep biogenic methane and drilling-associated gas artifacts: impact and consequences on characterization of petroleum fluids. In preparation for AAPG Bull

    Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954

    Article  Google Scholar 

  • Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536

    Article  Google Scholar 

  • Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S (2010) Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol 76:1783–1788

    Article  Google Scholar 

  • Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519

    Article  Google Scholar 

  • Ver Eecke HC, Butterfield DA, Huber JA, Lilley MD, Olson EJ, Roe KK, Evans LJ, Merkel AY, Cantin HV, Holden JF (2012) Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents. Proc Natl Acad Sci U S A 100:13674–13679

    Article  Google Scholar 

  • Wadham JL, Arndt S, Tulaczyk S, Stibal M, Tranter M, Telling J, Lis GP, Lawson E, Ridgwell A, Dubnick A, Sharp MJ, Anesio AM, Butler CEH (2012) Potential methane reservoirs beneath Antarctica. Nature 488:633–637

    Article  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. Prokaryotes 3:165–207

    Article  Google Scholar 

  • Worth RJ, Sigurdsson S, House CH (2013) Seeding life on the Moons of the outer planets via lithopanspermia. Earth Planet Astrophys. arXiv:1311.2558 [astro-ph.EP], p 13

    Google Scholar 

  • Wrede C, Dreier A, Kokoshka S, Hoppert M (2012) Archaea in symbioses. Archaea 2012:11, Article ID 596846

    Google Scholar 

  • Wuebbles D, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210

    Article  Google Scholar 

  • Wygrala B, Rottke W, Kornpihl D, Neumaier M, Al-Balushi A, Marlow L (2014) Assessment of controlling factors in mixed biogenic and thermogenic petroleum systems – a case study from the Levantine Basin. AAPG Search & Discovery Article #10636. Adapted from poster presentation given at AAPG Annual Convention and Exhibition, Houston, 6–9 Apr 2014, 3p

    Google Scholar 

  • Zeikus JG, Ben-Bassat A, Hegge PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440

    Google Scholar 

  • Zhang X, Li X, Zhang D, Qiang Su N, Yang W, Everitt HO, Liu J (2017) Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat Commun 8, Article 14542

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Strąpoć .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Strąpoć, D. (2018). Biogenic Methane. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_166

Download citation

Publish with us

Policies and ethics