Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Biogenic Methane

  • Dariusz StrąpoćEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_166

Definition

Biogenic methane is generated via a process called microbial methanogenesis, which is uniquely performed by methanogenic Archaea, the methanogens, namely several subbranches of Euryarchaeota on the 16S rRNA-based phylogenetic tree of life, i.e., Methanomicrobiales, Methanosarcinales, Methanococcales, and Methanobacteriales (Pace 2009). Microbial methanogenesis is the main terminal process of subsurface anaerobic organic-matter biodegradation (Head et al. 2003). Therefore, methanogenesis is important in the global carbon cycle, contributing to the terminal mineralization of organic matter. Figure 1 provides a summary of processes (biological and thermochemical) and substrates (organic and inorganic) for methane generation in nature and clarifies associated terminology. Accepted synonyms: microbial methane.
This is a preview of subscription content, log in to check access.

References

  1. Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291–294CrossRefGoogle Scholar
  2. Archer D (2007) Methane hydrate stability and anthropogenic climate change. Biogeosci Discuss 2007(4):993–1057, European Geosciences UnionCrossRefGoogle Scholar
  3. Archer DE, Buffett BA, McGuire PC (2012) A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles. Biogeosciences 9:2859–2878CrossRefGoogle Scholar
  4. Bachu S, Michael K (2003) Possible controls of hydrogeological and stress regimes on the producibility of coalbed methane in Upper Cretaceous-Tertiary strata of the Alberta basin, Canada. AAPG Bull 87:1729–1754CrossRefGoogle Scholar
  5. Bauchop T, Mountfort DO (1981) Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl Environ Microbiol 42:1103–1110Google Scholar
  6. Belopolsky A, Tari G, Craig J, Iliffe J (2012) New and emerging plays in the eastern Mediterranean: an introduction. Pet Geosci 18:371–372CrossRefGoogle Scholar
  7. Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460CrossRefGoogle Scholar
  8. Biddle JF, Cardman Z, Mendlovitz H, Albert DB, Lloyd KG, Boetius A, Teske A (2012) Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. Intl Soc Microbiol Ecol J 6:1018–1031Google Scholar
  9. Blair CC, D’Hondt S, Spivack AJ, Kingsley RH (2007) Radiolytic hydrogen and microbial respiration in subsurface sediments. Astrobiology 7:951–970CrossRefGoogle Scholar
  10. Borrel G, O’Toole PW, Harris HMB, Peyret P, Brugere J-F, Gribaldo S (2013) Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol Evol 5:1769–1780CrossRefGoogle Scholar
  11. Bousquet P, Tyler SC, Peylin P, Van Der Werf GR, Prigent C, Hauglustaine DA, Dlugokencky EJ, Miller JB, Ciais P, White J, Steele LP, Schmidt M, Ramonet M, Papa F, Lathière J, Langenfelds RL, Carouge C, Brunke E-G (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443CrossRefGoogle Scholar
  12. Brandt WA, Coplen TB, Vogl J, Rosner M, Prohaska T (2014) Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical report). Pure Appl Chem 86:425–467CrossRefGoogle Scholar
  13. Camill P (2005) Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Clim Change 68:135–152CrossRefGoogle Scholar
  14. Carini S, Bano N, LeCleir G, Joye SB (2005) Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environ Microbiol 7:1127–1138CrossRefGoogle Scholar
  15. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958CrossRefGoogle Scholar
  16. Coffin RB, Osburn CL, Plummer RE, Smith JP, Rose PS, Grabowski KS (2015) Deep sediment-sourced methane contribution to shallow sediment organic carbon: Atwater Valley, Texas-Louisiana Shelf, Gulf of Mexico. Energies 8:1561–1583CrossRefGoogle Scholar
  17. Cokar M, Kallos MS, Huang H, Larter SR, Gates ID (2010) Biogenic gas generation from shallow organic-matter-rich shales. Can Soc Unconv Gas/Soc Petrol Eng 135323, 13pGoogle Scholar
  18. Colwell FS, Boyd S, Delwiche ME, Reed DW, Phelps TJ, Newby DT (2008) Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia Margin. Appl Environ Microbiol 74:3444–3452CrossRefGoogle Scholar
  19. Conrad R (2005) Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org Geochem 36:739–752CrossRefGoogle Scholar
  20. Deutzmann JS, Sahina M, Spormanna AM (2015) Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. MBio 6:e00496-15CrossRefGoogle Scholar
  21. Durham LS (2013) Levant Basin brings potential to new areas. AAPG Explor, May 2013. http://archives.aapg.org/explorer/2013/05may/ace_levant0513.cfm
  22. Faiz M, Hendry P (2006) Significance of microbial activity in Australian coal bed methane reservoirs – a review. Bull Can Petrol Geol 54:261–272CrossRefGoogle Scholar
  23. Ferry JG (1993) Methanogenesis: Ecology, physiology, biochemistry & genetics. Ferry JG (ed). Chapman & Hall, New York, 536pGoogle Scholar
  24. Formolo M, Martini A, Petsch S (2008) Biodegradation of sedimentary organic matter associated with coalbed methane in the Powder River and San Juan Basins, U.S.A. Int J Coal Geol 76:86–97CrossRefGoogle Scholar
  25. Guan Y, Ngugi DK, Blom J, Ali S, Ferry JG, Stingl U (2014) Draft genome sequence of an obligately methylotrophic methanogen, Methanococcoides methylutens isolated from marine sediment. Genome Announc 2(6):e01184-14CrossRefGoogle Scholar
  26. Guo H, Zhang J, Han Q, Huang Z, Urynowicz MA, Wang F (2017) Important role of fungi in the production of secondary biogenic coalbed methane in China’s Southern Qinshui Basin. Energy Fuel 31:7197–7207CrossRefGoogle Scholar
  27. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352CrossRefGoogle Scholar
  28. Hook SE, Wright A-DG, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010:11, Article ID 945785Google Scholar
  29. Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057CrossRefGoogle Scholar
  30. Hutten TJ, Bongaerts HC, van der Drift C, Vogels GD (1980) Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri. Antonie Van Leeuwenhoek 46:601–610CrossRefGoogle Scholar
  31. Inagaki F, Hinrichs K-U, Kubo Y et al (2015) Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 349:420–424CrossRefGoogle Scholar
  32. Ishii S, Kosaka T, Hori K, Hotta Y, Watanabe K (2005) Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl Environ Microbiol 71:7838–7845CrossRefGoogle Scholar
  33. Izon G, Zerkle AL, Williford KH, Farquhar J, Poulton SW, Claire MW (2017) Biological regulation of atmospheric chemistry en route to planetary oxygenation. Proc Natl Acad Sci U S A 114:E2571–E2579CrossRefGoogle Scholar
  34. Jacquet B, Strąpoć D, Khan S, Inan Villegas E, Albrecht H, Okoh B, McKinney D (2017) Persistence of biogenic methane and its mixing with thermogenic fluids: observations and consequences. IMOG2017, abstract P216Google Scholar
  35. Jin Z, Firoozabadi A (2014) Effect of water on methane and carbon dioxide sorption in clay minerals by Monte Carlo simulations. Fluid Phase Equilib 382:10–20CrossRefGoogle Scholar
  36. Kemp DB, Coe AL, Cohen AS, Schwark L (2005) Astronomical pacing of methane release in the Early Jurassic period. Nature 437:396–399CrossRefGoogle Scholar
  37. Kouzuma A, Kato S, Watanabe K (2015) Microbial interspecies interactions: recent findings in syntrophic consortia. Front Microbiol 6:8, Article 477Google Scholar
  38. Kouzuma A, Tsutsumi M, Ishii S, Ueno Y, Abe T, Watanabe K (2017) Non-autotrophic methanogens dominate in anaerobic digesters. Nature Sci Rep 7:1510.  https://doi.org/10.1038/s41598-017-01752-xCrossRefGoogle Scholar
  39. Kraev G, Schulze E-D, Yurova A, Kholodov A, Chuvilin E, Rivkina E (2017) Cryogenic displacement and accumulation of biogenic methane in frozen soils. Atmosphere 8:19CrossRefGoogle Scholar
  40. L’Haridon S, Reysenbach A-L, Banta A, Messner P, Schumann P, Stackebrandt E, Jeanthon C (2003) Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 53:1931–1935CrossRefGoogle Scholar
  41. Li Y-L, Lin C-M (2010) Exploration methods for late Quaternary shallow biogenic gas reservoirs in the Hangzhou Bay area, eastern China. AAPG Bull 94:1741–1759CrossRefGoogle Scholar
  42. Lupa B (2010) Functional genomics of methanogens. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 501–508CrossRefGoogle Scholar
  43. Martini AM, Walter LM, McIntosh JC (2008) Identification of microbial and thermogenic gas components from Upper Devonian black shale cores, Illinois and Michigan basins. AAPG Bull 92:327–339CrossRefGoogle Scholar
  44. Mayhew LE, Ellison ET, McCollom TM, Trainor TP, Templeton AS (2013) Hydrogen generation from low-temperature water–rock reactions. Nat Geosci 6:478–484CrossRefGoogle Scholar
  45. Mayumi D, Mochimaru H, Tamaki H, Yamamoto K (2016) Methane production from coal by a single methanogen. Science 354:222–225CrossRefGoogle Scholar
  46. Milkov AV (2005) Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org Geochem 36:681–702CrossRefGoogle Scholar
  47. Mills DJ, Vitt S, Strauss M, Shima S, Vonck J (2013) De novo modeling of the F420-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. Elife 2:e00218.  https://doi.org/10.7554/eLife.00218
  48. Moran JJ, House CH, Vrentas JM, Freeman KH (2008) Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans. Appl Environ Microbiol 74:540–542CrossRefGoogle Scholar
  49. Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, Sherwood Lollar B, Pratt ML, Boice E, Southam G, Wagner G, Baker BJ, Pfiffner SM, Lin L-H, Onstott TC (2005) Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault. Appl Environ Microbiol 71:8773–8763CrossRefGoogle Scholar
  50. Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565–576CrossRefGoogle Scholar
  51. Pang X, Zhao W, Su A, Li S (2005) Geochemistry and origin of the giant Quaternary shallow gas accumulations in the eastern Qaidam Basin, NW China. Org Geochem 36:1636–1649CrossRefGoogle Scholar
  52. Pashin JC (2007) Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: key to understanding reservoir performance and environmental issues. Appl Geochem 22:2257–2272CrossRefGoogle Scholar
  53. Paterek JR, Smith PH (1988) Methanophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int J Syst Bacteriol 38:122–123CrossRefGoogle Scholar
  54. Pinyo K, Wooding S, Masdakom M (2016) Unlocking the mystery of Zawtika biogenic gas accumulations, offshore Gulf of Moattama, Myanmar. International petroleum technology conference, Bangkok, 14–16 Nov 2016, IPTC-18832-MS, 21pGoogle Scholar
  55. Prinzhofer A, Pernaton E (1997) Isotopically light methane in natural gas: bacterial imprint or diffusive fractionation? Chem Geol 142:193–200CrossRefGoogle Scholar
  56. Qiang J, Fuqi C, Yang G, Liang C (2016) Restricted access genetic types and accumulation models for biogenic gases in Bohai Bay Basin, eastern China. Bull Can Petrol Geol 64:24–46CrossRefGoogle Scholar
  57. Rao H, Schmidt LC, Bonin J, Robert M (2017) Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature.  https://doi.org/10.1038/nature23016
  58. Rotaru A-E, Malla Shrestha P, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605CrossRefGoogle Scholar
  59. Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2016) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage 5:81–91CrossRefGoogle Scholar
  60. Schneider F, Dubille M, Montadert L (2016) Modeling of microbial gas generation: application to the eastern Mediterranean “Biogenic Play”. Geol Acta 14:403–417Google Scholar
  61. Segarra KEA, Schubotz F, Samarkin V, Yoshinaga MY, Hinrichs K-U, Joye SB (2015) High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nat Commun 6, Article 7477Google Scholar
  62. Sherwood Lollar B, Frape SK, Weise SM, Fritz P, Macko SA, Welhan JA (1993) Abiogenic methanogenesis in crystalline rocks. Geochim Cosmochim Acta 57:5087–5097CrossRefGoogle Scholar
  63. Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK (2004) H2-rich fluids from serpentinization: geochemical and biotic implications. Proc Natl Acad Sci U S A 101:12818–12823CrossRefGoogle Scholar
  64. Strąpoć D, Picardal FW, Turich C, Schaperdoth I, Macalady JL, Lipp JS, Lin Y-S, Ertefai TF, Schubotz F, Hinrichs K-U, Mastalerz M, Schimmelmann A (2008) Methane-producing microbial community in a coal bed of the Illinois basin. Appl Environ Microbiol 74:2424–2432CrossRefGoogle Scholar
  65. Strąpoć D, Ashby M, Wood L, Levinson R, Huizinga B (2010a) Significant contribution of methyl/methanol-utilizing methanogenic pathway in a subsurface biogas environment. In: Whitby C, Skovhus TL (eds) Applied microbiology and molecular biology in oil field systems, Part 4. Springer, Netherlands, pp 211–216Google Scholar
  66. Strąpoć D, Mastalerz M, Drobniak A, Schimmelmann A, Hasenmueller NR (2010b) Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian – Mississippian), eastern Illinois basin. AAPG Bull 94:1713–1740.CrossRefGoogle Scholar
  67. Strąpoć D, Mastalerz M, Dawson K, Macalady JL, Callaghan AV, Wawrik B, Turich C, Ashby M (2011) Biogeochemistry of microbial coal-bed methane. Annu Rev Earth Planet Sci 39:617–656CrossRefGoogle Scholar
  68. Strąpoć D, Jacquet B, Torres O, Khan RMS, Inan Villegas E, Albrecht H, Okoh B, McKinney D (2017) Deep biogenic methane and drilling-associated gas artifacts: impact and consequences on characterization of petroleum fluids. In preparation for AAPG BullGoogle Scholar
  69. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954CrossRefGoogle Scholar
  70. Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536CrossRefGoogle Scholar
  71. Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S (2010) Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol 76:1783–1788CrossRefGoogle Scholar
  72. Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519CrossRefGoogle Scholar
  73. Ver Eecke HC, Butterfield DA, Huber JA, Lilley MD, Olson EJ, Roe KK, Evans LJ, Merkel AY, Cantin HV, Holden JF (2012) Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents. Proc Natl Acad Sci U S A 100:13674–13679CrossRefGoogle Scholar
  74. Wadham JL, Arndt S, Tulaczyk S, Stibal M, Tranter M, Telling J, Lis GP, Lawson E, Ridgwell A, Dubnick A, Sharp MJ, Anesio AM, Butler CEH (2012) Potential methane reservoirs beneath Antarctica. Nature 488:633–637CrossRefGoogle Scholar
  75. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  76. Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. Prokaryotes 3:165–207CrossRefGoogle Scholar
  77. Worth RJ, Sigurdsson S, House CH (2013) Seeding life on the Moons of the outer planets via lithopanspermia. Earth Planet Astrophys. arXiv:1311.2558 [astro-ph.EP], p 13Google Scholar
  78. Wrede C, Dreier A, Kokoshka S, Hoppert M (2012) Archaea in symbioses. Archaea 2012:11, Article ID 596846Google Scholar
  79. Wuebbles D, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210CrossRefGoogle Scholar
  80. Wygrala B, Rottke W, Kornpihl D, Neumaier M, Al-Balushi A, Marlow L (2014) Assessment of controlling factors in mixed biogenic and thermogenic petroleum systems – a case study from the Levantine Basin. AAPG Search & Discovery Article #10636. Adapted from poster presentation given at AAPG Annual Convention and Exhibition, Houston, 6–9 Apr 2014, 3pGoogle Scholar
  81. Zeikus JG, Ben-Bassat A, Hegge PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440Google Scholar
  82. Zhang X, Li X, Zhang D, Qiang Su N, Yang W, Everitt HO, Liu J (2017) Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat Commun 8, Article 14542CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GeoservicesSchlumbergerRoissyFrance