Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Biomarkers: Coal

  • Achim BechtelEmail author
  • Wilhelm Püttmann
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_150


Biomarkers. Complex organic compounds which retained structural similarities to biological precursors identified in living organisms.

Lipids. Small molecules that originate from biochemical subunits, including fats, waxes, sterols, etc. These molecules can be extracted by organic solvents.

Coal. Combustible black sedimentary rock formed by humification of plant materials. According to increased maturation, coals are classified as lignites, subbituminous coals, bituminous coals, and anthracites, respectively.


Organic geochemical methods have become important tools for the reconstruction of paleovegetation, environmental changes, and transformation processes of organic matter during diagenesis. The application of gas chromatography and mass spectrometry techniques on extractable organic matter (i.e. lipids) from low-rank coals or compounds released during pyrolysis has been used to gain information about coal-forming vegetation. Biomarkers were successfully used...

This is a preview of subscription content, log in to check access.


  1. Alexander R, Kagi RI, Woodhouse GW, Volkman JK (1983) The geochemistry of some biodegraded Australian oils. APEA J 23:53–63Google Scholar
  2. Arens NC, Jahren AH, Amundson R (2000) Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology 261:137–164CrossRefGoogle Scholar
  3. Auras S, Wilde V, Scheffler K, Hoernes S, Kerp H, Püttmann W (2006) Aromatized arborane/fernane hydrocarbons as biomarkers for cordaites. Naturwissenschaften 93:616–621CrossRefGoogle Scholar
  4. Bechtel A, Markic M, Sachsenhofer RF, Jelen B, Gratzer R, Püttmann W (2004) Paleoenvironment of the upper Oligocene Trbovlje coal seam (Slovenia). Int J Coal Geol 57:23–48CrossRefGoogle Scholar
  5. Bechtel A, Sachsenhofer RF, Zdravkov A, Kostova I, Gratzer R (2005) Influence of floral assemblage, facies and diagenesis on petrography and organic geochemistry of the Eocene Bourgas coal and the Miocene Maritza East lignite (Bulgaria). Org Geochem 36:1498–1522CrossRefGoogle Scholar
  6. Bechtel A, Hamor-Vido M, Sachsenhofer RF, Reischenbacher D, Gratzer R, Püttmann W (2007) The middle Eocene Markushegy subbituminous coal (Hungary): paleoenvironmental implications from petrographical and geochemical studies. Int J Coal Geol 72:33–52CrossRefGoogle Scholar
  7. Bechtel A, Gratzer R, Sachsenhofer RF, Gusterhuber J, Lücke A, Püttmann W (2008) Biomarker and carbon isotope variation in coal and fossil wood of Central Europe through the Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 262:166–175CrossRefGoogle Scholar
  8. Bechtel A, Karayiğit AI, Sachsenhofer RF, Inaner H, Christanis K, Gratzer G (2014) Spatial and temporal variability in vegetation and coal facies as reflected by organic petrological and geochemical data in the Middle Miocene Çayirhan coal field (Turkey). Int J Coal Geol 134–135:46–60CrossRefGoogle Scholar
  9. Blumenstengel H, Krutzsch W, Volland L, Knoth W, Knuth G (1996) Revidierte Stratigraphie tertiärer Ablagerungen im südlischen Sachsen-Anhalt Teil 1: Raum Halle-Merseburg. Hallesches Jahrbuch der Geowissenschaften. Reihe B, Beiheft, Landesamt für Geologie und Bergwesen, Sachsen-Anhalt, Halle/Saale 1:101 ppGoogle Scholar
  10. Boreham CJ, Crick IH, Powell TG (1988) Alternative calibration of the Methylphenanthrene index against vitrinite reflectance: application to maturity measurements on oils and sediments. Org Geochem 12:289–294CrossRefGoogle Scholar
  11. Bruch A (1998) Palynologische Untersuchungen im Oligozän Sloweniens – Paläoumwelt und Paläoklima im Ostalpenraum. Tübinger Mikropaläontol Mitt 18:1–193Google Scholar
  12. Cramer BS, Toggweiler JR, Wright JD, Katz ME, Miller KG (2009) Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24:PA4216.  https://doi.org/10.1029/2008PA001683CrossRefGoogle Scholar
  13. Dehmer J (1989) Petrographical and organic geochemical investigation of the Oberpfalz brown coal deposit, West Germany. Int J Coal Geol 11:273–290CrossRefGoogle Scholar
  14. Dick JM, Evans KA, Holman AI, Jaraula CMB, Grice K (2013) Estimation and application of the thermodynamic properties of aqueous phenanthrene and isomers of methylphenanthrenes at high temperature. Geochim Cosmochim Acta 122:247–266CrossRefGoogle Scholar
  15. Didyk BM, Simoneit BRT, Brassell SC, Eglinton G (1978) Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature 272:261–222CrossRefGoogle Scholar
  16. Dzou LIP, Noble RA, Senftle JT (1995) Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates. Org Geochem 23:681–697CrossRefGoogle Scholar
  17. Eissmann L (1994) Leitfaden der Geologie des Präquartärs im Saale-Elbe-Gebiet. DEUQUA-Tagung 1994, Leipzig. Altenberger Naturwiss Forsch 7:11–53Google Scholar
  18. Feng X, Epstein S (1995) Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration. Geochim Cosmochim Acta 59:2599–2608CrossRefGoogle Scholar
  19. Ficken KJ, Li B, Swain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/ floating freshwater aquatic macrophytes. Org Geochem 31:745–749CrossRefGoogle Scholar
  20. Goossens H, de Leeuw JW, Schenk PA, Brassell SC (1984) Tocopherols as likely precursors of pristane in ancient sediments an crude oils. Nature 312:440–442CrossRefGoogle Scholar
  21. Grantham PJ, Douglas AG (1980) The nature and origin of sesquiterpenoids in some tertiary fossil resins. Geochim Cosmochim Acta 44:1801–1810CrossRefGoogle Scholar
  22. Gupta V, Smemo KA, Yavitt JB, Fowle D, Branfireum B, Basiliko N (2013) Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type. Environ Sci Technol 47:8273–8279Google Scholar
  23. Haas M, Daxner-Höck G, Decker K, Kolcon I, Kovar-Eder J, Meller B, Sachsenhofer RF (1998) Palaeoenvironmental studies in the Early Miocene lignite opencast mine Oberdorf, N Voitsberg, Styria, Austria. In: Steininger FF (ed) The Early Miocene lignite deposit of Oberdorf N Voitsberg, 140. Jahrbuch Geologische Bundesanstalt, Wien, pp 413–424Google Scholar
  24. Hautevelle Y, Michels R, Malartre F, Trouiller A (2006) Vascular plant biomarker as proxies for palaeoflora and palaeoclimatic changes at the Dogger/Malm transition of the Paris Basin (France). Org Geochem 37:610–625CrossRefGoogle Scholar
  25. Hayek EWH, Jordis U, Moche W, Sauter F (1989) A bicentennial of betulin. Phytochemistry 28:2229–2242CrossRefGoogle Scholar
  26. Hayek EWH, Krenmayr P, Lohninger H, Jordis U, Moche W, Sauter F (1990) Identification of archaeological and recent wood tar pitches using gas chromatography/mass spectrometry and pattern recognition. Anal Chem 62:2038–2043CrossRefGoogle Scholar
  27. Hemming DL, Switsur VR, Waterhouse JS, Heaton THE, Carter AH (1998) Climate variation and the stable carbon isotope composition of tree ring cellulose: an intercomparison of Quercus robur, Fagus sylvatica and Pinus silvestris. Tellus 50B:25–33CrossRefGoogle Scholar
  28. Heppenheimer H, Steffens K, Püttmann W, Kalkreuth W (1992) Comparison of resinite related aromatic biomarker distributions in Cretaceous-Tertiary coals from Canada and Germany. Org Geochem 18:273–287CrossRefGoogle Scholar
  29. Jordan M (1995) δ13C-Markierungen in Jahrringen fossiler Baumstämme – miozäne Klimazeugen aus der Niederrheinischen Bucht. Hundt Druck GmbH, KölnGoogle Scholar
  30. Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, Jetten MSM, Sinninge Damste JS, Op den Caop HJM (2010) Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci 3:617–621CrossRefGoogle Scholar
  31. Koch BP, Rullkötter J, Lara RJ (2003) Evaluation of triterpenols and sterols as organic matter biomarkers in a mangrove ecosystem in northern Brazil. Wetl Ecol Manag 11:257–263CrossRefGoogle Scholar
  32. Kolcon I, Sachsenhofer RF (1999) Petrography, palynology and depositional environment of the early Miocene Oberdorf lignite seam (Styrian Basin, Austria). Int J Coal Geol 41:275–308CrossRefGoogle Scholar
  33. Krutzsch W, Blumenstengel H, Kiesel Y, Rüffle L (1992) Paläobotanische Klimagliederung des Alttertiärs (Mitteleozän bis Oberoligozän) in Mitteldeutschland und das Problem der Verknüpfung mariner und kontinentaler Gliederungen (klassische Biostratigraphien – paläobotanisch-ökologische Klimastratigraphie – Evolutions-Stratigraphie der Vertebraten). N Jb Geol Paläontol 186:137–253Google Scholar
  34. Kvalheim OM, Christy AA, Telnaes N, Bjorseth A (1987) Maturity determination of organic matter in coals using the methylphenanthrene distribution. Geochim Cosmochim Acta 51:1883–1888CrossRefGoogle Scholar
  35. Lim KLH, Pancost RD, Hornibrook ERC, Maxfield PJ, Evershed RP (2012) Archaeol: an indicator of methanogenesis in water-saturated soils. Archaea 2012.  https://doi.org/10.1155/2012/896727CrossRefGoogle Scholar
  36. Lipson DA, Jha M, Raab TK, Oechel WC (2010) Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. J Geophys Res Biogeosci 115:G00I06.  https://doi.org/10.1029/2009JG001147CrossRefGoogle Scholar
  37. López-Dias V, Urbanczyk J, Blanco CG, Borrego AG (2013) Biomarkers as paleoclimate proxies in peatlands in coastal high plains in Asturias, N Spain. Int J Coal Geol 116–117:270–280CrossRefGoogle Scholar
  38. Loureiro MRB, Cardoso JN (1990) Aromatic hydrocarbons in the Paraiba Valley oil shale. Org Geochem 15:351–359CrossRefGoogle Scholar
  39. Lu Y, Hautevelle Y, Michels R (2013) Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy – part 1: the Araucariaceae family. Biogeosciences 10:1943–1962CrossRefGoogle Scholar
  40. Makou MC, Hughen KA, Xu L, Sylva SP, Eglinton TI (2007) Isotopic records of tropical vegetation and climate change from terrestrial vascular plant biomarkers preserved in Cariaco Basin sediments. Org Geochem 38:1680–1691CrossRefGoogle Scholar
  41. Medeiros PM, Simoneit BRT (2007) Gas chromatography coupled to mass spectrometry for analyses of organic compounds and biomarkers as tracers for geological, environmental, and forensic research. J Sep Sci 30:1516–1536CrossRefGoogle Scholar
  42. Moore TA, Shearer JC, Miller SL (1996) Fungal origin of oxidized plant material in the Palangkaraya peat deposit, Kalimantan Tengah, Indonesia: implications of ‘inertinite’ formation in coal. Int J Coal Geol 30:1–23CrossRefGoogle Scholar
  43. Murray AP, Padley D, McKirdy DM, Booth WE, Summons RE (1994) Oceanic transport of fossil dammar resin: the chemistry of coastal resinites from South Australia. Geochim Cosmochim Acta 58:3049–3059CrossRefGoogle Scholar
  44. Naafs BDA, Inglis GN, Zheng Y, Amesbury MJ, Biester H et al (2017) Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids. Geochim Cosmochim Acta 208:285–301CrossRefGoogle Scholar
  45. Nichols JE, Booth RK, Jackson ST, Pendall EG, Huang Y (2006) Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat. Org Geochem 37:1505–1513CrossRefGoogle Scholar
  46. Noble RA, Alexander R, Kagi RI, Knox J (1985) Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils. Geochim Cosmochim Acta 49:2141–2147CrossRefGoogle Scholar
  47. Norgate CM, Boreham CJ, Wilkins AJ (1999) Changes in hydrocarbon maturity indices with coal rank and type, Buller Coalfield, New Zealand. Org Geochem 30:985–1010CrossRefGoogle Scholar
  48. Nott CJ, Xie S, Avsejs LA, Maddy D, Chambers FM, Evershed RP (2000) n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation. Org Geochem 31:231–235CrossRefGoogle Scholar
  49. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methano-consuming archaea revealed by direct coupled isotopic and phylogenetic analysis. Science 293:484–487CrossRefGoogle Scholar
  50. Otto A, Wilde V (2001) Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers – a review. Bot Rev 67:141–238CrossRefGoogle Scholar
  51. Otto A, Walther H, Püttmann W (1997) Sesqui- and diterpenoid biomarkers in Taxodium-rich Oligocene oxbow lake clays, Weisselster basin, Germany. Org Geochem 26:105–115CrossRefGoogle Scholar
  52. Pancost RD, Sinninge Damsté JS (2003) Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol 195:29–58CrossRefGoogle Scholar
  53. Pancost RD, Sinninghe Damsté JS, de Lint S, van der Maarel MJEC, Gottschal JC, TMMS Party (2000a) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126–1132CrossRefGoogle Scholar
  54. Pancost RD, van Geel B, Baas M, Sinnighe-Damsté JS (2000b) Delta13C values and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in peat deposits. Geology 28:663–666CrossRefGoogle Scholar
  55. Pancost RD, Baas M, van Geel B, Sinninghe Damsté JS (2002) Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog. Org Geochem 33:675–690CrossRefGoogle Scholar
  56. Pancost RD, McClymont EL, Bingham EM, Roberts Z, Charman DJ, Hornibrook ERC, Blundell A, Chambers FM, Lim KLH, Evershed RP (2011) Archeol as a methanogen biomarker in ombrotrophic bogs. Org Geochem 42:1279–1287CrossRefGoogle Scholar
  57. Paull R, Michaelsen BH, McKirdy DM (1998) Fernenes and other triterpenoid hydrocarbons in Dicroidium-bearing Triassic mudstones and coals from South Australia. Org Geochem 29:1331–1343CrossRefGoogle Scholar
  58. Peters KE, Walters C, Moldowan JM (2005) The biomarker guide, 2nd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  59. Philp RP (1985) Fossil fuel biomarkers. Applications and spectra. Methods Geochem Geophys 23:1–294Google Scholar
  60. Poole I, Dolezych M, Kool J, van der Burgh J, van Bergen PF (2006) Do stable carbon isotopes of brown coal woods record changes in Lower Miocene palaeoecology? Palaeogeogr Palaeoclimatol Palaeoecol 236:345–354CrossRefGoogle Scholar
  61. Radke M, Schaefer RG, Leythaueser D, Teichmüller M (1980) Composition of soluble organic matter in coals: relation to rank and liptinite fluorescence. Geochim Cosmochim Acta 44:1787–1800CrossRefGoogle Scholar
  62. Radke M, Wilsch H, Leythaueser D, Teichmüller M (1982) Aromatic components of coal: relation of distribution pattern to rank. Geochim Cosmochim Acta 46:1831–1848CrossRefGoogle Scholar
  63. Radke M, Leythaeuser D, Teichmüller M (1984) Relationship between rank and composition of aromatic hydrocarbons for coals of different origins. Org Geochem 6:423–430CrossRefGoogle Scholar
  64. Radke M, Welte HD, Willsch H (1986) Maturity parameters based on aromatic hydrocarbons: influence of organic matter type. Org Geochem 10:51–64CrossRefGoogle Scholar
  65. Regnery J, Püttmann W, Koutsodendris A, Mulch A, Pross J (2013) Comparison of the paleoclimatic significance of higher plant biomarker concentrations and pollen data: a case study of lake sediments from the Holsteinian interglacial. Org Geochem 61:73–84CrossRefGoogle Scholar
  66. Sachse D, Billault I, Bowen GJ, Chikaraishi Y, Dawson TE, Feakins SJ, Freeman KH, Magill CR, McInerney FA, van der Meer MTJ, Polissar P, Robins RJ, Sachs JP, Schmidt H-L, Sessions AL, White JWC, West JB, Kahmen A (2012) Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu Rev Earth Planet Sci 40:221–249CrossRefGoogle Scholar
  67. Schulze T, Michaelis W (1990) Structure and origin of terpenoid hydrocarbons in some German coals. Org Geochem 16:1051–1058CrossRefGoogle Scholar
  68. Schwarzbauer J, Littke R, Meier R, Strauss H (2013) Stable carbon isotope ratios of aliphatic biomarkers in late Paleozoic coals. Int J Coal Geol 107:127–140CrossRefGoogle Scholar
  69. Segarra KEA, Schubotz F, Samarkin V, Yoshinga MY, Hinrichs K.U, Joye SB (2015) High rates of anerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nat Commun 8.  https://doi.org/10.1038/ncomms8477
  70. Seki O, Meyers PA, Kawamura K, Zheng Y, Zhou W (2009) Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in northeast China during the last 16 kyr. Org Geochem 33:671–677CrossRefGoogle Scholar
  71. Simoneit BRT, Grimalt JO, Wang TG, Cox RE, Hatcher PG, Nissenbaum A (1986) Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers, and coal. Org Geochem 10:877–889CrossRefGoogle Scholar
  72. Smemo KA, Yavitt JB (2011) Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems. Biogeosciences 8:779–793CrossRefGoogle Scholar
  73. Smith LC, MacDonalds GM, Velicjko AA, Beilman DW, Borisowa OK, Frey KE, Krementski KV, Sheng Y (2004) Siberian peatlands: a net carbon sink and global methane source since the early. Holocene Sci 303:353–356Google Scholar
  74. Stojanović K, Životić D (2013) Comparative study of Serbian Miocene coals – insights from biomarker composition. Int J Coal Geol 107:3–23CrossRefGoogle Scholar
  75. Strobl SAI, Sachsenhofer RF, Bechtel A, Meng Q (2014) Paeleoenvironment of the Eocene coal seam in the Fushun basin (NE China): implications from petrography and organic geochemistry. Int J Coal Geol 134–135:24–37CrossRefGoogle Scholar
  76. Szczerba M, Rospondek MJ (2010) Controls on distributions of methylphenanthrenes in sedimentary rock extracts: critical evaluation of existing geochemical data from molecular modelling. Org Geochem 41:1297–1311CrossRefGoogle Scholar
  77. Talbot HM, McClymont EL, Inglis GN, Evershed RP, Pancost RD (2016) Origin and preservation of bacteriohopanepolyol signatures in Sphagnum peat from Bissendorf Moor (Germany). Org Geochem 97:95–110CrossRefGoogle Scholar
  78. ten Haven HL, de Leeuw JW, Rullkötter J, Sinninghe Damste JS (1987) Restricted utility of the pristane/phytane ratio as a paleoenvironmental indicator. Nature 330:641–643CrossRefGoogle Scholar
  79. Tomoaia-Cortisel M, Chifu E, Zsako J, Mocanu, Quin PJ, Kates M (1992) Monolayer properties of archaeol and caldarchaeol polar lipids of a methanogenic archaebacterium, Methanospirillum hungatei, at the air/water interface. Chem Phys Lipids 63:131–138CrossRefGoogle Scholar
  80. Tornabene TG, Langworthy TA, Holzer G, Oro J (1979) Squalenes, phytanes and other isoprenoids as major neutral lipids of methanogenic and thermoacidophilic Archarbacteria. J Mol Evol 13:73–83CrossRefGoogle Scholar
  81. van Aarssen BGK, Cox H, Hoogendoorn NP, de Leeuw JW (1990) A cadinene biopolymer in fossil and extant dammar resin as a source for cadinanes and biocadinanes in crude oils from South East Asia. Geochim Cosmochim Acta 54:3021–3031CrossRefGoogle Scholar
  82. van Winden JF, Kip N, Reichart GJ, Jetter MSM, Po den Camp HJM, Sinninghe Damste JS (2010) Lipids of symbiotic methane oxidizing bacteria in peat moss studied using stable carbon isotopic labelling. Org Geochem 41:1040–1044CrossRefGoogle Scholar
  83. van Winden JF, Talbot HM, Vleeschouwer FD, Reichart G-J, Sinninge Damste JS (2012) Variation of methanotroph-related proxies in peat deposits from Misten Bog, Hautes-Fagnes, Belgium. Org Geochem 53:73–79CrossRefGoogle Scholar
  84. Vávra N, Walther H (1993) Chemofossilien aus dem Harz von Cunninghamia miocenica ETTINGSHAUSEN (Taxodiaceae, Oligo/Miozän). N Jb Geol Paläont 11:693–704Google Scholar
  85. Versteegh GJM, Schefuß E, Dupont L, Marret F, Sinnighe Damsté JS, Jansen JHF (2004) Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems. Geochim Cosmochim Acta 68:411–422CrossRefGoogle Scholar
  86. Vliex M, Hageman HW, Püttmann W (1994) Aromatized arborane/fernane hydrocarbons as molecular indicators of floral changes in the Upper Carboniferous/Lower Permian strata of the Saar/Nahe Basin, southwestern Germany. Geochim Cosmochim Acta 58:4689–4702CrossRefGoogle Scholar
  87. Wolfe JA (1980) Tertiary climates and floristic relationships at high latitudes in the northern hemisphere. Palaeogeogr Palaeoclimatol Palaeoeol 30:313–323CrossRefGoogle Scholar
  88. Wolff GA, Ruskin N, Marshall JD (1992) Biogeochemistry of an early diagenetic concretion from the Birchi Bed (L. Lias, W. Dorset, U.K.) Org Geochem 19:431–444CrossRefGoogle Scholar
  89. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  90. Zheng YH, Zhou WJ, Xie SC, Yu XF (2009) A comparative study of n-alkane biomarkers and pollen records: an example from southern China. Chin Sci Bull 54:1065–1072Google Scholar
  91. Zheng Y, Singarayer JS, Cheng P, Yu X, Liu Z, Valdes PJ, Pancost RD (2014) Holocene variations in peatland methane cycling associated with the Asian summer monsoon system. Nat Commun 5.  https://doi.org/10.1038/ncomms5631

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Geoscience and Geophysics Petroleum GeologyMontanuniversitaet LeobenLeobenAustria
  2. 2.Institute for Atmospheric and Environmental Sciences, Department of Environmental Analytical ChemistryGoethe UniversityFrankfurt am MainGermany