Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Biomarker: Assessment of Thermal Maturity

  • Kenneth E. PetersEmail author
  • J. Michael Moldowan
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_147


Thermal maturity consists of temperature/time-driven disproportionation reactions that convert sedimentary organic matter into light and heavy fractions of petroleum and finally into hydrocarbon gas and pyrobitumen or graphite. Different geochemical scales commonly used to describe the extent of thermal maturation include vitrinite reflectance (Ro), programmed pyrolysis (e.g., Rock-Eval) Tmax and production index, and biomarker maturity ratios (e.g., Peters et al. 2005).


Geochemists divide thermal maturation into three stages: diagenesis, catagenesis, and metagenesis. Temperature and vitrinite reflectance values at the transitions between these stages vary depending on the burial heating rate and type of organic matter and are thus only approximate. Diagenesis consists of chemical, physical, and biological changes in the organic matter during and after sediment deposition and lithification at temperatures below ~80 °C (Ro<0.6%). Diagenesis occurs prior to...

This is a preview of subscription content, log in to check access.


  1. Dahl J, Moldowan JM, Peters KE, Claypool GE, Rooney MA, Michael GE, Mello MR, Kohnen ML (1999) Diamondoid hydrocarbons as indicators of natural oil cracking. Nature 399:54–57CrossRefGoogle Scholar
  2. Moldowan JM, Dahl JE, Zinniker D, Barbanti SM (2015) Underutilized advanced geochemical technologies for oil and gas exploration and production-1.The diamondoids. J Pet Sci Eng 126:87–96CrossRefGoogle Scholar
  3. Peters KE, Cassa MR (1994) Applied source rock geochemistry. In: Magoon LB, Dow WG (eds) The petroleum system – from source to trap, American association of petroleum geologists memoirs, vol 60, pp 93–117Google Scholar
  4. Peters KE, Moldowan JM (1993) The biomarker guide. Prentice-Hall, Englewood Cliffs. 363 pGoogle Scholar
  5. Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide. Cambridge University Press, Cambridge, UK. 1155 pGoogle Scholar
  6. Peters KE, Moldowan JM, LaCroce MV, Kubicki JD (2014) Stereochemistry, elution order, and molecular modeling of four diaergostanes in petroleum. Org Geochem 76:1–8CrossRefGoogle Scholar
  7. Radke M, Welte DH (1983) The methylphenanthrene index (MPI). A maturity parameter based on aromatic hydrocarbons. In: Bjorøy M, Albrecht C, Cornford C, de Groot K, Eglinton E, Galimov E, Leythaeuser D, Pelet R, Rullkötter J, Speer G (eds) Advances in organic geochemistry, vol 1981. Wiley, New York, pp 504–512Google Scholar
  8. Seifert WK, Moldowan JM (1979) The effect of biodegradation on steranes and terpanes in crude oils. Geochim Cosmochim Acta 43:111–126CrossRefGoogle Scholar
  9. Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Am Assoc Pet Geol Bull 74:1559–1570Google Scholar
  10. Walters CC, Lillis PG, Peters KE (2012) Molecular indicators of geothermal history. In: Harris NB, Peters KE (eds) Analyzing the thermal history of sedimentary basins: methods and case studies, SEPM special publication, vol 103, pp 17–28Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SchlumbergerMill ValleyUSA
  2. 2.Department of Geological SciencesStanford UniversityStanfordUSA
  3. 3.Biomarker Technologies, Inc.Rohnert ParkUSA