Skip to main content

Carbonate Minerals and the CO2-Carbonic Acid System

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Carbonic acid, H2CO3, forms from the dissolution of CO2 in water and plays a key role in weathering, biological production, formation and deposition of sediments, and the carbon cycle. Carbonate minerals, primarily calcite, aragonite, and dolomite precipitating from these solutions, constitute the second most abundant class of sedimentary rocks.

Introduction

Carbonate rocks, consisting mainly of the minerals calcite (CaCO3) and dolomite [CaMg(CO3)2], are the second most abundant class of sedimentary rocks , after terrigenous clastics, on land and on the ocean floor. The widespread occurrence of carbonate rocks in the geologic record is attributable to the following factors:

  1. 1.

    CO2 gas has a relatively high solubility in water, higher than molecular oxygen and nitrogen.

  2. 2.

    CO2 hydrolyzes in water, making the bicarbonate and carbonate anions (discussed in more detail in section “CO2-Carbonic Acid-Carbonate System and Seawater”) that react with divalent and monovalent metals.

    ...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andersson, A. J., 2014. The oceanic CaCO3 cycle. In Holland, H. D., and Turekian, K. K. (eds.), Treatise on Geochemistry. Oxford: Elsevier, Vol. 8, pp. 519–542.

    Chapter  Google Scholar 

  • Anthony, J. W., Bideaux, R. A., Bladh, K. W., and Nichols, M. C., 2003. Handbook of Mineralogy. Chantilly: Mineralogical Society of America. Borates, Carbonates, Sulphates, Vol. 5. http://www.handbookofmineralogy.org/

  • Arvidson, R. S., and Mackenzie, F. T., 1997. Tentative kinetic model for dolomite precipitation rate and its application to dolomite distribution. Aquatic Geochemistry, 2, 273–298.

    Article  Google Scholar 

  • Arvidson, R. S., and Mackenzie, F. T., 1999. The dolomite problem: control of precipitation kinetics by temperature and saturation state. American Journal of Science, 299, 257–288.

    Article  Google Scholar 

  • Bass, J. D., 1995. Elasticity of minerals, glasses, and melts. In Mineral Physics and Crystallography: A Handbook of Physical Constants. Washington, DC: American Geophysical Union, pp. 45–63.

    Chapter  Google Scholar 

  • Berner, R. A., 2006. Carbon, sulfur and O2 across the Permian-Triassic boundary. Journal of Geochemical Exploration, 88, 416–418.

    Article  Google Scholar 

  • Berner, R. A., and Maasch, K. A., 1996. Chemical weathering and controls on atmospheric O2 and CO2: fundamental principles were enunciated by J. J. Ebelmen in 1845. Geochimica et Cosmochimica Acta, 60(9), 1633–1637.

    Article  Google Scholar 

  • Bertram, M. A., Mackenzie, F. T., Bishop, F. C., and Bischoff, W. D., 1991. Influence of temperature on the stability of magnesian calcites. American Mineralogist, 76, 1889–1896.

    Google Scholar 

  • Birch, F., 1966. Compressibility; elastic constants. In Clark, S. P., Jr. (ed.), Handbook of Physical Constants. New York: Geological Society of America. Geological Society of America Memoir, 97, pp. 97–173.

    Google Scholar 

  • Bischoff, W. D., Mackenzie, F. T., and Bishop, F. C., 1987. Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochimica et Cosmochimica Acta, 51, 1413–1423.

    Article  Google Scholar 

  • Bischoff, W. D., Bertram, M. A., Mackenzie, F. T., and Bishop, F. C., 1993. Diagenetic stabilization pathways of magnesian calcites. Carbonates and Evaporites, 8, 82–89.

    Article  Google Scholar 

  • Böhm, F., Gussone, N., Eisenhauer, A., Reynaud, S., Paytan, A., Bosellini, F., Brachert, T., Reitner, J., Wörheide, G., and Dullo, W.-C., 2006. Ca isotope fractionation of inorganic, biologically induced and biologically controlled calcium carbonates. Geophysical Research Abstracts, 8, 09686.

    Google Scholar 

  • Broecker, W. S., and Peng, T.-H., 1982. Tracers in the Sea. Palisades, NY: Lamont-Doherty Geological Observatory, Columbia University.

    Google Scholar 

  • Busenburg, E., and Plummer, L. N., 1989. Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm pressure. Geochimica et Coscochimica Acta, 53, 1189–1208.

    Article  Google Scholar 

  • Carlson, W. D., 1980. The calcite-aragonite equilibrium: effects of Sr substitution and anion orientational disorder. American Mineralogist, 65, 1252–1262.

    Google Scholar 

  • Chang, V. T.-C., Williams, R. J. P., Makishima, A., Belshawl, N. S., and O’Nion, R. K., 2004. Mg and Ca isotope fractionation during CaCO3 biomineralisation. Biochemical and Biophysical Research Communications, 323, 79–85.

    Article  Google Scholar 

  • Chapman, R., 2006. A Sea Water Equation of State Calculator. Laurel: The Johns Hopkins Universisty. Applied Physics Laboratory. http://fermi.jhuapl.edu/denscalc.html

  • Chou, L., Garrels, R. M., and Wollast, R., 1989. Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chemical Geology, 78, 269–282.

    Article  Google Scholar 

  • Coplen, T. B., 1995. Discontinuance of SMOW and PDB. Nature, 375, 285.

    Article  Google Scholar 

  • Emrich, K., Ehhalt, D. H., and Vogel, J. C., 1970. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth and Planetary Science Letters, 8, 363–371.

    Article  Google Scholar 

  • Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C., 1951. Carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 62, 417–426.

    Article  Google Scholar 

  • Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C., 1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64, 1315–1326.

    Article  Google Scholar 

  • Fantle, M. S., and DePaolo, D. J., 2007. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: the Ca2+(aq)–calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochimica et Cosmochimica Acta, 71, 2524–2546.

    Article  Google Scholar 

  • Fantle, M. S., and Tipper, E. T., 2014. Calcium isotopes in the global biogeochemical Ca cycle: implications for development of a Ca isotope proxy. Earth Science Reviews, 129, 148–177.

    Article  Google Scholar 

  • Farkaš, J., Chackrabati, R., Jacobsen, S. B., Kump, L. R., and Melezhik, V. A., 2012. Chapter 7.10.3: Ca and Mg isotopes in sedimentary carbonates. In Frontiers in Earth Sciences 8. New York: Springer, pp. 1467–1482.

    Google Scholar 

  • Faure, G., and Mensing, T. M., 2004. Isotopes: Principles and Applications, 3rd edn. Hoboken, NJ: Wiley, xxv+897 pp.

    Google Scholar 

  • Fei, Y., 1995. Thermal expansion. In Mineral Physics and Crystallography: A Handbook of Physical Constants. Washington, DC: American Geophysical Union, pp. 29–44.

    Chapter  Google Scholar 

  • Goldsmith, J. R., and Heard, H. C., 1961. Subsolidus phase relations in the system CaCO3–MgCO3. Journal of Geology, 69, 45–74.

    Article  Google Scholar 

  • Gradstein, F. M., Ogg, J. G., and Smith, A. G., 2004. A Geologic Time Scale 2004. New York: Cambridge University Press.

    Book  Google Scholar 

  • Graf, D. L., and Goldsmith, J. R., 1955. Dolomite-magnesian calcite relations at elevated temperatures and CO2 pressures. Geochimica et Cosmochimica Acta, 7, 109–128.

    Article  Google Scholar 

  • Graf, D. L., and Goldsmith, J. R., 1958. The solid solubility of MgCO3 in CaCO3: a revision. Geochimica et Cosmochimica Acta, 13, 218–219.

    Article  Google Scholar 

  • Gussone, N., Böhm, F., Eisenhauer, A., Dietzel, M., Heuser, A., Teichert, B. M. A., Reitner, J., Wörheide, G., and Dullo, W.-C., 2005. Calcium isotope fractionation in calcite and aragonite. Geochimica et Cosmochimica Acta, 69(18), 4485–4494.

    Article  Google Scholar 

  • Hanks, T. C., and Anderson, D. L., 1969. The early thermal history of the Earth. Physics of the Earth and Planetary Interiors, 2, 19–29.

    Article  Google Scholar 

  • Hardie, L. A., 1987. Perspectives on dolomitization: a critical review of some current views. Journal of Sedimentary Petrology, 57, 166–183.

    Article  Google Scholar 

  • Harker, R. I., and Tuttle, O. F., 1955. Studies in the system CaO-MgO-CO2, Part 2. Limits of solid solution along the join CaCO3–MgCO3. American Journal of Science, 253, 274–282.

    Article  Google Scholar 

  • Hay, W. W., Sloan, J. L., II, and Wold, C. N., 1988. Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction. Journal of Geophysical Research, 93(B12), 14,933–14,940.

    Article  Google Scholar 

  • Henkes, G. A., Passey, B. H., Wanamaker, A. D., Jr., Grossman, E. L., Ambrose, W. G., Jr., and Carroll, M. L., 2013. Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. Geochimica et Cosmochimica Acta, 106, 307–325.

    Article  Google Scholar 

  • Hippler, D., Schmitt, A.-D., Gussone, N., Heuser, A., Stille, P., Eisenhauer, A., and Nägler, T. F., 2003. Calcium isotopic composition of various reference materials and seawater. Geostandards Newslett, Journal of Geostandards and Geoanalytical, 27(1), 13–19.

    Article  Google Scholar 

  • Holmden, C., Papanastassiou, D. A., Blanchon, P., and Evans, S., 2012. δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments. Geochimica et Cosmochimica Acta, 83, 179–184.

    Article  Google Scholar 

  • Katz, M. E., Wright, J. D., Miller, K. G., Cramer, B. S., Fennel, K., and Falkowski, P. G., 2005. Biological overprint of the geological carbon cycle. Marine Geology, 217, 323–338 (Falkowsi, P. G., and Knoll, A. H. (eds.), Evolution of Primary Producers in the Sea, Chapter 18. Amsterdam: Elsevier, pp. 405–430).

    Article  Google Scholar 

  • Katz, M. E., Fennel, K., and Falkowski, P. G., 2007. Geochemical and biological consequences of phytoplankton evolution. In Falkowski, P. G., and Knoll, A. (eds.), Evolution of Aquatic Photoautotrophs. Academic Press, pp. 405–430.

    Google Scholar 

  • Land, L. S., 1985. The origin of massive dolomite. Journal of Geology, 33, 112–125.

    Google Scholar 

  • Le Quere, C., Moriarty, R., Andrew, R. M., et al., 2015. Carbon budget 2014. Earth System Science Data, 7, 47–85.

    Article  Google Scholar 

  • Lerman, A., and Clauer, N., 2007. Stable isotopes in the sedimentary record. Treatise on Geochemistry, 7, 1–55.

    Article  Google Scholar 

  • Lerman, A., Guidry, M., Andersson, A., and Mackenzie, F. T., 2011. Coastal ocean Last Glacial Maximum to 2100 CO2-carbonic acid-carbonate system: a modeling approach. Aquatic Geochemistry, 17, 749–773.

    Article  Google Scholar 

  • Liu, L.-g., Chen, C.-c., Lin, C.-C., and Yang, Y.-j., 2005. Elasticity of single-crystal aragonite by Brillouin spectroscopy. Physics and Chemistry of Minerals, 32, 97–102.

    Article  Google Scholar 

  • Machel, H. G., and Mountjoy, E. W., 1986. Chemistry and environments of dolomitization – a reappraisal. Earth Science Reviews, 23, 175–222.

    Article  Google Scholar 

  • Mackenzie, F. T., and Andersson, A. J., 2013. The marine carbon system and ocean acidification during Phanerozoic time. Geochemical Perspectives, 2, 1–227.

    Article  Google Scholar 

  • Mackenzie, F. T., and Lerman, A., 2006. Carbon in the Geobiosphere – Earth’s Outer Shell. Dordrecht: Springer, xxi+402 pp.

    Google Scholar 

  • Mackenzie, F. T., and Morse, J. W., 1992. Sedimentary carbonates through Phanerozoic time. Geochimica et Cosmochimica Acta, 56, 3281–3295.

    Article  Google Scholar 

  • Mackenzie, F. T., Lerman, A., and DeCarlo, E. H., 2011. Coupled C, N, P, and O biogeochemical cycling at the land-ocean interface. In Middleburg, J., and Laane, R. (eds.), Treatise on Coastal and Estuarine Science. New York: Elsevier, Vol. 5, pp. 317–342.

    Chapter  Google Scholar 

  • McKenzie, J. A., 1991. The dolomite problem: an outstanding controversy. In Muller, D. W., McKenzie, J. A., and Weissert, H. (eds.), Controversies in Modern Geology: Evolution of Geological Theories in Sedimentology, Earth History and Tectonics. London: Academic Press, pp. 37–54.

    Google Scholar 

  • McKenzie, J. A., and Vasconcelos, C., 2009. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives. Sedimentology, 56(1), 205–219.

    Article  Google Scholar 

  • Millero, F., 2013. Chemical Oceanography, 4th edn. Boca Raton, FL: CRC Press/Taylor & Francis Group. 547 pp.

    Google Scholar 

  • Mindat. 1993–2016. http://www.mindat.org/

  • Morse, J. W., and Mackenzie, F. T., 1990. Geochemistry of Sedimentary Carbonates. New York: Elsevier, xvi + 707 pp.

    Google Scholar 

  • NIST. 2016. Thermophysical Properties of Fluid Systems. http://webbook.nist.gov/chemistry/fluid/

  • O’Leary, M. H., 1988. Carbon isotopes in photosynthesis. BioScience, 38, 328–335.

    Article  Google Scholar 

  • O’Neil, J. R., Clayton, R. N., and Mayeda, T. K., 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51(12), 5547–5558.

    Article  Google Scholar 

  • Pickett, M., and Anderrson, A. J., 2015. Dissolution rates of biogenic carbonates in natural seawater at different pCO2 conditions: a laboratory study. Aquatic Geochemistry, 21(6), 459–485.

    Article  Google Scholar 

  • Plummer, L. N., and Mackenzie, F. T., 1974. Predicting mineral solubility from rate data: application to the dissolution of magnesian calcites. American Journal of Science, 274, 61–83.

    Article  Google Scholar 

  • Railsback, L. B., 2002. Patterns in the Compositions, Properties, and Geochemistry of Carbonate Minerals. Athens: Department of Geology, University of Georgia. http://www.gly.uga.edu/railsback/Fundamentals/FundamentalsCarbs.html

  • Redfern, S. A. T., Wood, B. J., and Henderson, C. M. B., 1993. Static compressibility of magnesite to 20 GPa: implications for MgCO3 in the lower mantle. Geophysical Research Letters, 20(19), 2099–2012.

    Article  Google Scholar 

  • Robie, R. A., and Hemingway, B. S., 1995. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (10 5 Pascals) Pressure and at Higher Temperatures. USGS Bulletin 2131, iv+461 pp.

    Google Scholar 

  • Ross, N. A., 1997. The equation of state and high-pressure behavior of magnesite. American Mineralogist, 82, 682–688.

    Article  Google Scholar 

  • Runnels, R. T., and Schleicher, J. A., 1956. Chemical composition of Eastern Kansas limestone. Kansas Geological Survey Bulletin, 119(3), 1–18.

    Google Scholar 

  • Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., et al., 2004. The oceanic sink for anthropogenic CO2. Science, 305(5862), 367–371.

    Article  Google Scholar 

  • Saulnier, S., Rollion-Bard, C., Vigier, N., and Chaussidon, M., 2012. Mg isotope fractionation during calcite precipitation: an experimental study. Geochimica et Cosmochimica Acta, 91, 75–91.

    Article  Google Scholar 

  • Skinner, B. J., 1966. Thermal expansion. In Clark, S. P., Jr. (ed.), Handbook of Physical Constants. New York: Geological Society of America. Geological Society of America Memoir, 97, pp. 75–96.

    Chapter  Google Scholar 

  • Speer, J. A., 1983. Crystal chemistry and phase relations of orthorhombic carbonates. Reviews in Mineralogy, 11, 145–189.

    Google Scholar 

  • Thorstenson, D. C., and Plummer, L. N., 1977. Equilibrium criteria for two component solids reacting with fixed composition in an aqueous phase – example: the magnesian calcites. American Journal of Science, 277, 1203–1223.

    Article  Google Scholar 

  • Tuthorn, M., Zech, M., Ruppenthal, M., Oelmann, Y., Kahmen, A., del Valle, H. F., Wilcke, W., and Glaser, B., 2014. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy II: insight from a climate transect study. Geochimica et Cosmochimica Acta, 126, 624–634.

    Article  Google Scholar 

  • Urey, H. C., 1952. The Planets: Their Origin and Development. New Haven, CT: Yale University Press, xvii+245 pp.

    Google Scholar 

  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Goddéris, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Strauss, H., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88.

    Article  Google Scholar 

  • Walter, L. M., and Morse, J. W., 1984. Reactive surface area of skeletal carbonate during dissolution: effect of grain size. Journal of Sedimentary Petrology, 54, 1081–1090.

    Google Scholar 

  • Walter, L. M., and Morse, J. W., 1985. The dissolution kinetics of shallow marine carbonates in seawater: a laboratory study. Geochimica et Cosmochimica Acta, 49, 1503–1513.

    Article  Google Scholar 

  • Weatherill, G. W., 1966. Radioactive decay constants and energies. In Clark, S. P., Jr. (ed.), Handbook of Physical Constants. New York: Geological Society of America. Geological Society of America Memoir, 97, pp. 513–519.

    Chapter  Google Scholar 

  • Wood, B. J., Walter, M. J., and Wade, J., 2006. Accretion of the Earth and segregation of its core. Nature, 441, 825–833.

    Article  Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693.

    Article  Google Scholar 

  • Zeebe, R. E., and Wolf-Gladrow, D., 2001. CO 2 in Seawater: Equilibrium, Kinetics, Isotopes. Amsterdam: Elsevier, xiii+346 pp.

    Google Scholar 

  • Zhang, J., and Reeder, R. J., 1999. Comparative compressibilities of calcite-structure carbonates: deviations from empirical relations. American Mineralogist, 84, 861–870.

    Article  Google Scholar 

  • Zhong, S., and Mucci, A., 1989. Calcite and aragonite precipitation from seawater solutions of various salinities: precipitation rates and overgrowth compositions. Chemical Geology, 78(3), 283–299.

    Article  Google Scholar 

  • Zhu, P., and Macdougall, J. D., 1998. Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochimica et Cosmochimica Acta, 62(10), 1691–1698.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NOAA Hawaii Sea Grant, School of Earth and Ocean Science and Technology, University of Hawaii, and by Weinberg College of Arts and Sciences, Northwestern University. We thank Mr. Noah Howins, University of Hawaii, for help with the compilation of references cited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Lerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Lerman, A., Mackenzie, F.T. (2016). Carbonate Minerals and the CO2-Carbonic Acid System. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_84-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_84-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics