Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White

Archeological Geochemistry

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_77-1


Archaeological geochemistry is the discipline which integrates geochemical analysis techniques and methods into the study of the human past, to answer questions on subsistence, migration, environment, and the transport and use of natural raw materials.


Archaeology is an interdisciplinary science par excellence. In its quest to reconstruct human behavior in the natural and cultural environment in the past, it uses knowledge and techniques from many different academic disciplines. As the exact sciences are increasingly integrated into archaeological research throughout the world, a range of geochemical tools are applied to archaeological questions dating from early hominins of the Plio-Pleistocene to Paleolithic hunter-gatherers , early Neolithic farmers, and great early state civilizations. Archaeological geochemistry began with the investigation of ancient materials, particularly stone and pottery. More recently, archaeological chemistry has seen a growth of...


Lead Isotope Isotope Ratio Mass Spectrometer Tooth Enamel Bone Collagen Strontium Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access


  1. Ambrose SH, Butler BM, Hanson DB, Hunter-Anderson RL, Krueger HW (1997) Stable isotopic analysis of human diet in the Marianas archipelago, western Pacific. Am J Phys Anthropol 104:343–361CrossRefGoogle Scholar
  2. Aubert M, Brumm A, Ramli M, Sutikna T, Saptomo EW, Hakim B, Morwood MJ, van den Bergh GD, Kinsley L, Dosseto A (2014) Pleistocene cave art from Sulawesi, Indonesia. Nature 514:223–227CrossRefGoogle Scholar
  3. Beard BL, Johnson CM (2000) Strontium isotope composition of skeletal material can determine the birth place and geographic mobility of humans and animals. J Forensic Sci 45:1049–1061CrossRefGoogle Scholar
  4. Balasse M, Boury L, Ughetto-Monfrin J, Tresset A (2012) Stable isotope insights (δ18O, δ13C) into cattle and sheep husbandry at Bercy (Paris, France, 4th millennium BC): birth seasonality and winter leaf foddering. Environ Archaeol 17:29–44CrossRefGoogle Scholar
  5. Balasse M, Evin A, Tornero C, Radu V, Fiorillo D, Popovici D, Andreescu R, Dobney K, Cucchi T, Bălăşescu A (2016) Wild, domestic and feral? Investigating the status of suids in the Romanian Gumelniţa (5th mil. cal BC) with biogeochemistry and geometric morphometrics. J Anthropol Archaeol 42:27–36CrossRefGoogle Scholar
  6. Begemann F, Kallas K, Schmitt-Strecker S, Pernicka E (1999) Tracing ancient tin via isotope analysis. In: Hauptmann A, Pernicka E, Rehren T, Yalcin U (eds) The beginnings of metallurgy, Der Anschnitt Beiheft 9. Deutsches Bergbau-Museum, Bochum, pp 277–284Google Scholar
  7. Bentley RA (2006) Strontium isotopes from the earth to the archaeological skeleton: a review. J Archaeol Method Theory 13:135–187CrossRefGoogle Scholar
  8. Bentley RA, Knipper C (2005) Geographic patterns in biologically-available strontium, carbon and oxygen isotopes signatures in prehistoric SW Germany. Archaeometry 47:629–644CrossRefGoogle Scholar
  9. Bentley RA, Buckley HR, Spriggs M, Bedford S, Ottley CJ, Nowell GM, Macpherson CG, Pearson DG (2007) Lapita migrants in the Pacific’s oldest cemetery. Am Antiq 72:645–656CrossRefGoogle Scholar
  10. Bentley RA, Price TD, Wahl J, Atkinson TC (2008) Community structure in the Neolithic community of Talheim. Antiquity 82:290–304CrossRefGoogle Scholar
  11. Bentley RA, Bickle P, Fibiger L, Nowell GM, Dale CW, Hedges REM, Hamilton J, Wahl J, Francken M, Grupe G, Lenneis E, Teschler-Nicola M, Arbogast R-M, Hofmann D, Whittle A (2012) Community differentiation and kinship among Europe’s first farmers. Proc Natl Acad Sci U S A 109:9326–9330CrossRefGoogle Scholar
  12. Bocherens H, Drucker DG, Germonpré M, Oliva M (2015) Reconstruction of the Gravettian food-web at Predmostí I using multi-isotopic tracking (13C, 15N, 34S) of bone collagen. Quat Int 359–360:211–228CrossRefGoogle Scholar
  13. Bogaard A, Fraser R, Heaton THE, Wallace M, Vaiglova P, Charles M, Jones G, Evershed RP, Styring AK, Andersen NH, Arbogast R-M, Bartosiewicz L, Gardeisen A, Kanstrup M, Maier U, Marinova E, Ninov L, Schäfer M, Stephan E (2013) Crop manuring and intensive land management by Europe’s first farmers. Proc Natl Acad Sci U S A 110:12589–12594CrossRefGoogle Scholar
  14. Bogaard A, Strien H-C, Krause R (2011) Towards a social geography of cultivation and plant use in an early farming community: Vaihingen an der Enz, south-west Germany. Antiquity 85:395–416CrossRefGoogle Scholar
  15. Bollongino R, Nehlich O, Richards MP, Orschiedt J, Thomas MG, Sell C, Fajkošová Z, Powell A, Burger J (2013) 2000 years of parallel societies in stone age Central Europe. Science 342:479–481CrossRefGoogle Scholar
  16. Bowen GJ, Wilkinson B (2002) Spatial distribution of δ18O in meteoric precipitation. Geology 30:315–318CrossRefGoogle Scholar
  17. Braekmans D, Degryse P, Poblome J, Neyt B, Vyncke K, Waelkens M (2011) Understanding ceramic variability: an archaeometrical interpretation of the classical and Hellenistic ceramics at Düzen Tepe and Sagalassos (Southwest Turkey). J Archaeol Sci 38(9):2101–2115CrossRefGoogle Scholar
  18. Brill RH (1999) Chemical analyses of early glasses. Corning Museum of Glass, CorningGoogle Scholar
  19. Brill RH, Wampler JM (1965) Isotope studies of ancient lead. Am J Archaeol 71:63–77CrossRefGoogle Scholar
  20. Bryant JD, Koch P, Froelich PN, Showers WJ, Genna BJ (1996) Oxygen isotope partitioning between phosphate and carbonate in mammalian apatite. Geochim Cosmochim Acta 60:5145–5148CrossRefGoogle Scholar
  21. Budd P, Millard A, Chenery C, Lucy S, Roberts C (2004) Investigating population movement by stable isotope analysis. Antiquity 78:127–140CrossRefGoogle Scholar
  22. Burton JH, Price TD (2003) The use of barium and strontium abundances in human skeletal tissues to determine their geographic origins. Int J Osteoarchaeol 13:88–95CrossRefGoogle Scholar
  23. Chiaradia M, Gallay A, Todt W (2003) Different contamination styles of prehistoric human teeth at a Swiss necropolis (Sion, Valais) inferred from lead and strontium isotopes. Appl Geochem 18:353–370CrossRefGoogle Scholar
  24. Choy K, Smith CI, Fuller BT, Richards MP (2010) Investigation of amino acid δ13C signatures in bone collagen to reconstruct human palaeodiets using LC-IR-MS. Geochim Cosmochim Acta 74:6093–6111CrossRefGoogle Scholar
  25. Copley MC, Berstan R, Dudd SN, Docherty G, Mukherjee AJ, Straker V, Payne S, Evershed RP (2003) Direct chemical evidence for widespread dairying in prehistoric Britain. Proc Natl Acad Sci U S A 100:1524–1529CrossRefGoogle Scholar
  26. Cramp LJE, Evershed RP (2014) Reconstructing aquatic resource exploitation in human prehistory using lipid biomarkers and stable isotopes. In: Holland HD, Turekian KK (eds) Treatise on geochemistry: archaeology and anthropology. Elsevier, Amsterdam, pp 319–339CrossRefGoogle Scholar
  27. Degryse P (2012) Archeometric applications. In: Vanhaecke F, Degryse P (eds) Isotopic analysis, fundamentals and applications using ICP-MS. Wiley-VCH Verlag GmbH & Co. KG, Weinheim, pp 373–390CrossRefGoogle Scholar
  28. Degryse P (ed) (2014) Glass making in the Greco-Roman World, studies in archaeological sciences 4. Leuven University Press, LeuvenGoogle Scholar
  29. Degryse P, Braekmans D (2014) Elemental and isotopic analysis of ancient ceramics and glass. In: Cerling T (ed) Treatise on geochemistry: archaeology and anthropology, Chapter 14. Elsevier, Oxford, pp 191–207CrossRefGoogle Scholar
  30. Degryse P, Shortland AJ (2009) Trace elements in provenancing raw materials for Roman glass production. Geol Belg 12(3–4):135–143Google Scholar
  31. Degryse P, Shortland AJ (2013) Nourishing archaeology and science. Proc Natl Acad Sci U S A 110(51):20352–20353CrossRefGoogle Scholar
  32. Degryse P, Schneider J, Haack U, Lauwers V, Poblome J, Waelkens M, Muchez P (2006) Evidence for glass ‘recycling’ using Pb and Sr isotopic ratios and Sr-mixing lines: the case of early Byzantine Sagalassos. J Archaeol Sci 33(4):494–501CrossRefGoogle Scholar
  33. Degryse P, Lobo L, Shortland AJ, Vanhaecke F, Blomme A, Painter J, Gimeno D, Eremin K, Greene J, Kirk S, Walton M (2015) Isotopic investigation into the raw materials of late bronze age glass making. J Archaeol Sci 62:153–160CrossRefGoogle Scholar
  34. Deino AL, Renne PR, Swisher CC (1998) 40Ar/39Ar dating in paleoanthropology and archeology. Evol Anthropol 6(2):63–75CrossRefGoogle Scholar
  35. Denys C, Williams CT, Dauphin Y, Andrews P, Fernandez-Jalvo Y (1996) Diagenetical changes in Pleistocene small mammal bones from Olduvai bed I. Palaeogeogr Palaeoclimatol Palaeoecol 126:121–134CrossRefGoogle Scholar
  36. Devulder V, Vanhaecke F, Shortland A, Mattingly D, Jackson C, Degryse P (2014) Boron isotopic composition as a provenance indicator for the flux raw material in Roman natron glass. J Archaeol Sci 46:107–113CrossRefGoogle Scholar
  37. Devulder V, Gerdes A, Vanhaecke F, Degryse P (2015) Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry. Spectrochim Acta B At Spectrosc 105:116–120CrossRefGoogle Scholar
  38. Dunne J, Evershed RP, Salque M, Cramp L, Bruni S, Ryan K, Biagetti S, di Lernia S (2012) First dairying in green Saharan Africa in the fifth millennium BC. Nature 486:390–394CrossRefGoogle Scholar
  39. Ericson JE (1985) Strontium isotope characterization in the study of prehistoric human ecology. J Hum Evol 14:503–514CrossRefGoogle Scholar
  40. Evans JE, Montgomery J, Wildman G, Boulton N (2010) Spatial variations in biosphere 87Sr/86Sr in Britain. J Geol Soc London 167:1–4CrossRefGoogle Scholar
  41. Evans JA, Pashley V, Richards GJ, Brereton N, Knowles TG (2015) Geogenic lead isotope signatures from meat products in Great Britain. Sci Total Environ 537:447–452CrossRefGoogle Scholar
  42. Fraser RA, Bogaard A, Schäfer M, Arbogast RM, Heaton THE (2013) Integrating botanical, faunal and human stable carbon and nitrogen isotope values to reconstruct land use and palaeodiet at LBK Vaihingen an der Enz, Baden-Württemberg. World Archaeol 45(3):492–517CrossRefGoogle Scholar
  43. Freestone IC (2006) Glass production in late antiquity and the early Islamic period: a geochemical perspective. In: Maggetti M, Massiga B (eds) Geomaterials in cultural heritage, Special publications, vol 257. Geological Society of London, London, pp 201–216Google Scholar
  44. Frei KM, Price TD (2012) Strontium isotopes and human mobility in prehistoric Denmark. Archaeol Anthropol Sci 4:103–114CrossRefGoogle Scholar
  45. Frei KM, Mannering U, Kristiansen K, Allentoft ME, Wilson AS, Skals I, Tridico S, Nosch ML, Willerslev E, Clarke L, Frei R (2015) Tracing the dynamic life story of a Bronze Age Female. Sci Rep 5:10431CrossRefGoogle Scholar
  46. Gale NH (1997) The isotopic composition of tin in some ancient metals and the recycling problem in metal provenancing. Archaeometry 39:71–82CrossRefGoogle Scholar
  47. Gron KJ, Montgomery J, Nielsen PO, Nowell GM, Peterkin JP, Sørensen L, Rowley-Conwy P (2016) Strontium isotope evidence of early Funnel Beaker Culture movement of cattle. J Archaeol Sci Rep 6:248–251Google Scholar
  48. Haustein M, Gillis C, Pernicka E (2010) Tin isotopy – a new method for solving old questions. Archaeometry 52:816–832CrossRefGoogle Scholar
  49. Heaton THE (1999) Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants. J Archaeol Sci 26:637–649CrossRefGoogle Scholar
  50. Hedges REM (2002) Bone diagenesis: an overview of processes. Archaeometry 44:319–328CrossRefGoogle Scholar
  51. Hedges REM, Clement JG, Thomas CDL, O’Connell TC (2007) Collagen turnover in the adult femoral mid-shaft. Am J Phys Anthropol 133:808–816CrossRefGoogle Scholar
  52. Henderson J (2000) The science and archaeology of materials. Routledge, LondonGoogle Scholar
  53. Hodell DA, Quinn RL, Brenner M, Kamenov G (2004) Spatial variation of strontium isotopes (87Sr/86Sr) in the Maya region. J Archaeol Sci 31:585–601CrossRefGoogle Scholar
  54. Kamenov GD, Gulson BL (2014) The Pb isotopic record of historical to modern human lead exposure. Sci Total Environ 490:861–870CrossRefGoogle Scholar
  55. Keller AT, Regan LA, Lundstrom CC, Bower NW (2015) Evaluation of the efficacy of spatiotemporal Pb isoscapes for provenancing of human remains. Forensic Sci Int 261:83–92CrossRefGoogle Scholar
  56. Kempe DRC, Harvey AP (1983) The petrology of archaeological artefacts. Clarendon PressGoogle Scholar
  57. Koch PL, Heisinger J, Moss C, Carlson RW, Fogel ML, Behrensmeyer AK (1995) Isotopic tracking of change in diet and habitat use in African elephants. Science 267:1340–1343CrossRefGoogle Scholar
  58. Kohn MJ (1996) A predictive model for animal δ18O: accounting for diet and physiological adaptation. Geochim Cosmochim Acta 60:4811–4829CrossRefGoogle Scholar
  59. Kohn MJ, Cerling TE (2002) Stable isotope compositions of biological apatite. Rev Mineral Geochem 48:455–488CrossRefGoogle Scholar
  60. Lee-Thorp JA (2008) On isotopes and old bones. Archaeometry 50:925–950CrossRefGoogle Scholar
  61. Lewis J, Coath CD, Pike AWG (2014) An improved protocol for 87Sr/86Sr by LA-ICP-MS using oxide reduction and a customised plasma interface. Chem Geol 390:173–181CrossRefGoogle Scholar
  62. Lobo L, Degryse P, Shortland A, Eremin K, Vanhaecke F (2014) Copper and antimony isotopic analysis via multi-collector ICP-mass spectrometry for provenancing ancient glass. J Anal At Spectrom 29:58–64CrossRefGoogle Scholar
  63. Madgwick R, Mulville J, Stevens RE (2012) Isotopic analysis of fauna from British middens of the late Bronze Age. Environ Archaeol 17:126–140CrossRefGoogle Scholar
  64. Montgomery J, Evans JA, Wildman G (2006) 87Sr/86Sr isotope composition of bottled British mineral waters for environmental and forensic purposes. Appl Geochem 21:1526–1534CrossRefGoogle Scholar
  65. Montgomery J, Evans JA, Horstwood MSA (2010) Evidence for long-term averaging of strontium in bovine enamel using TIMS and LA-MC-ICP-MS strontium isotope intra-molar profiles. Environ Archaeol 15:32–42CrossRefGoogle Scholar
  66. Müller W, Anczkiewicz R (2016) Accuracy of laser-ablation (LA)-MC-ICPMS Sr isotope analysis of (bio)apatite – a problem reassessed. J Anal At Spectrom 31:259–269CrossRefGoogle Scholar
  67. Naito YI, Chikaraishi Y, Ohkouchi N, Drucker DG, Bocherens H (2013) Nitrogen isotopic composition of collagen amino acids as an indicator of aquatic resource consumption. World Archaeol 45:338–359CrossRefGoogle Scholar
  68. Neff H (2012) Laser ablation ICP-MS in archaeology. In: Lee MS (ed) Handbook of mass spectrometry. Wiley, New York, pp 829–843CrossRefGoogle Scholar
  69. Nowell GM, Horstwood MSA (2009) Comments on Richards et al. J Archaeol Sci 36:1334–1341CrossRefGoogle Scholar
  70. O’Leary MH (1988) Carbon isotopes in photosynthesis. BioScience 38:328–336CrossRefGoogle Scholar
  71. Outram AK, Stear N, Bendrey R, Olsen S, Kasparov A, Zaibert V, Thorpe N, Evershed RP (2009) Earliest horse harnessing and milking. Science 323:1332–1335CrossRefGoogle Scholar
  72. Peacock DPS (1970) The scientific analysis of ancient ceramics: a review. World Archaeol 1:375–389CrossRefGoogle Scholar
  73. Pike AWG (2002) Analysis of Caucasian metalwork – the use of antimonal, arsenical and tin bronze in the Late Bronze Age. In: Curtis J, Kruszynski M (eds) Ancient Caucasian and related material in the British museum, the British museum occasional paper 121. British Museum, London, pp 87–98Google Scholar
  74. Pike AWG, Hoffmann DL, García-Diez M, Pettitt PB, Alcolea J, De Balbín R, González-Sainz C, de las Heras C, Lasheras JA, Montes R, Zilhão J (2012) U-series dating of Paleolithic art in 11 caves in Spain. Science 336:1409–1413CrossRefGoogle Scholar
  75. Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters. Am J Sci 301:1–15CrossRefGoogle Scholar
  76. Pollard AM (2009) What a long strange trip it’s been: lead isotopes in archaeology. In: Shortland AJ, Freestone IC, Rehren T (eds) From mine to microscope: advances in the study of ancient technology. Oxbow Books, Oxford, pp 181–189Google Scholar
  77. Pollard AM, Bray PJ (2015) A new method for combining lead isotope and lead abundance data to characterize archaeological copper alloys. Archaeometry 57:996–1008CrossRefGoogle Scholar
  78. Pollard AM, Heron C (2008) Lead isotope geochemistry and the trade in metals. Chapter 9. In: Archaeological chemistry, 2nd edn. The Royal Society of Chemistry, Cambridge, UK, pp 302–345Google Scholar
  79. Prowse T, Schwarcz HP, Saunders S, Macchiarelli R, Bondioli L (2004) Isotopic paleodiet studies of skeletons from the Imperial Roman-age cemetery of Isola Sacra, Rome, Italy. J Archaeol Sci 31:259–272CrossRefGoogle Scholar
  80. Pryce TO, Htwe KMM, Georgakopoulou M, Martin T, Vega E, Rehren T, Win TT, Petchey P, Innanchai J, Pradier B (2016) Metallurgical traditions and metal exchange networks in late prehistoric central Myanmar, c. 1000 BC to c. AD 500. Archaeol Anthropol Sci. doi:10.1007/s12520-016-0436-7. (in press)Google Scholar
  81. Rehren T (2008) A review of factors affecting the composition of early Egyptian glasses and faience: alkali and alkali earth oxides. J Archaeol Sci 35:1345–1354CrossRefGoogle Scholar
  82. Rehren T, Pusch EB (2005) Late Bronze Age glass production at Qantir-Piramesses, Egypt. Science 308:1756–1758CrossRefGoogle Scholar
  83. Resano M, García-Ruiz E, Vanhaecke F (2010) Laser ablation – inductively coupled plasma mass spectrometry in archaeometric research. Mass Spectrom Rev 29:55–78Google Scholar
  84. Richards MP, Fuller BT, Sponheimer M, Robinson T, Ayliffe L (2003) Sulphur isotope measurements in archaeological samples. Int J Osteoarchaeol 13:37–45CrossRefGoogle Scholar
  85. Riehl S, Bryson R, Pustovoytov K (2008) Changing growing conditions for crops during the Near Eastern Bronze Age (3000–1200 BC): the stable carbon evidence. J Archaeol Sci 35:1011–1022CrossRefGoogle Scholar
  86. Salque M, Bogucki PI, Pyzel J, Sobkowiak-Tabaka I, Grygiel R, Szmyt M, Evershed RP (2013) Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493:522–525CrossRefGoogle Scholar
  87. Sarkar A, Mukherjee AD, Bera MK, Das B, Juyal N, Morthekai P, Deshpande RD, Shinde VS, Rao LS (2016) Oxygen isotope in archaeological bioapatites from India. Sci Rep 6:26555CrossRefGoogle Scholar
  88. Sayre EV, Smith RW (1961) Compositional categories of ancient glass. Science 133:1824–1826CrossRefGoogle Scholar
  89. Schibille N, Sterrett-Krause A, Freestone IC (2016) Glass groups, glass supply and recycling in late Roman Carthage. Archaeol Anthropol Sci. doi:10.1007/s12520-016-0316-1Google Scholar
  90. Schoeninger MJ (2009) Stable isotope evidence for the adoption of maize agriculture. Curr Anthropol 50:633–640CrossRefGoogle Scholar
  91. Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639CrossRefGoogle Scholar
  92. Sharpe AE, Kamenov GD, Gill A, Hodell DA, Emery KF, Brenner M, Krigbaum J (2016) Lead (Pb) isotope baselines for studies of ancient human migration and trade in the Maya region. PLoS One 11(11):e0164871CrossRefGoogle Scholar
  93. Shortland AJ, Rogers NW, Eremin K (2007) Trace element discriminants between Egyptian and Mesopotamian Late Bronze Age glasses. J Archaeol Sci 34:781–789CrossRefGoogle Scholar
  94. Shotyk W, Weiss D, Appleby PG, Cheburkin AK, Frei R, Gloor M, Kramers JD, Reese S, Van der Knaap WO (1998) History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281:1635–1640CrossRefGoogle Scholar
  95. Sillen A, Hall G, Armstrong R (1998) 87Sr/86Sr ratios in modern and fossil food-webs of the Sterkfontein valley. Geochim Cosmochim Acta 62:2463–2478CrossRefGoogle Scholar
  96. Smith BD, Zeder MA (2013) The onset of the Anthropocene. Anthropocene 4:8–13CrossRefGoogle Scholar
  97. Smyth J, Evershed RP (2015) Milking the megafauna: using organic residue analysis to understand early farming practice. Environ Archaeol 21(3):214–229CrossRefGoogle Scholar
  98. Stenhouse MJ, Baxter MS (1979) The uptake of bomb 14C in humans, in radiocarbon dating. In: Berger R, Suess HE (eds) Radiocarbon dating. University of California Press, Berkeley, pp 324–341Google Scholar
  99. Styring AK, Fraser RA, Arbogast RM, Halstead P, Isaakidou V, Pearson JA, Schäfer M, Triantaphyllou S, Valamoti SM, Wallace M, Bogaard A, Evershed RP (2015) Refining human palaeodietary reconstruction using amino acid δ15N values of plants, animals and humans. J Archaeol Sci 53:504–515CrossRefGoogle Scholar
  100. Tite M, Shortland AJ (2008) Production technology of faience and related early vitreous materials, Oxford University School of Archaeology Monograph, vol 72. Oxford University School of Archaeology, Oxford, pp 187–198Google Scholar
  101. Trickett MA, Budd P, Montgomery J, Evans J (2003) An assessment of solubility profiling as a decontamination procedure for the Sr-87/Sr-86 analysis of archaeological human skeletal tissue. Appl Geochem 18:653–658CrossRefGoogle Scholar
  102. Tykot RH (2016) Using non-destructive portable x-ray fluorescence spectrometers on stone, ceramics, metals, and other materials in museums. Appl Spectrosc 70:42–56CrossRefGoogle Scholar
  103. Wallace M, Jones G, Charles M, Fraser R, Heaton THE, Bogaard A (2015) Crop water availability in Neolithic and Bronze Age Western Asia and Aegean inferred directly by stable carbon isotope analysis. PLoS One 10(6):e0127085CrossRefGoogle Scholar
  104. Weigand PC, Harbottle G, Sayre EV (1977) Turquoise sources and source analysis: Mesoamerican and the Southwestern U.S.A. In: Earle TK, Ericson JE (eds) Exchange systems in prehistory. Academic Press, New York, pp 15–34CrossRefGoogle Scholar
  105. Willmes M, Kinsley L, Moncel MH, Armstrong RA, Aubert M, Eggins S, Grün R (2016) Improvement of laser ablation in situ micro-analysis to identify diagenetic alteration and measure strontium isotope ratios in fossil human teeth. J Archaeol Sci 70:102–116CrossRefGoogle Scholar
  106. Wilson L, Pollard AM (2001) The provenance hypothesis. In: Brothwell DR, Pollard AM (eds) Handbook of archaeological sciences. Wiley, New YorkGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Earth and Environmental Sciences, division GeologyCentre for Archaeological Sciences, KU LeuvenLeuvenBelgium
  2. 2.Comparative Cultural Studies and Hobby School of Public AffairsUniversity of Houston, McElhinney HallHoustonUSA