Skip to main content

Hydrothermal Solutions

  • Living reference work entry
  • First Online:
  • 175 Accesses

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

An aqueous solution with temperatures exceeding Earth’s surface temperature (hydro = water, thermal = hot). Hydrothermal solutions originate in Earth’s subsurface and carry dissolved minerals, salts, and gases.

Introduction

In Earth Sciences, hydrothermal solutions are predominantly hot briny aqueous solutions present in Earth’s subsurface and surface. They exist in meteoric, seawater, (sedimentary) basinal, metaphormic as well as magmatic systems, and are solvents for mineral-building and carbon-bearing species, as well as gases, and often carry high concentrations of sodium chloride. These solutions are key actors to both mass and heat transport in the subsurface, and have formed vast numbers of hydrothermal mineral deposits throughout geological times. The study of hydrothermal solutions is needed to resolve the conditions under which metals ions migrate in hot briny fluids in Earth’s crust to form economically valuable...

This is a preview of subscription content, log in via an institution.

References

  • Barnes HL (1997) Geochemistry of hydrothermal ore deposits. Wiley, New York

    Google Scholar 

  • Barnes HL (2015) Hydrothermal processes. Geochem Perspect 4:1–92

    Article  Google Scholar 

  • Bielska K, Havey DK, Scace GE, Lisak D, Harvey AH, Hodges JT (2013) High-accuracy measurements of the vapor pressure if ice references to the triple point. Geophys Res Lett 40:6303–6307

    Article  Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1988) Liquid-vapor relations in the critical region of the system NaCl-H2O from 380 to 415°C: a refined determination of the critical point and two-phase boundary of seawater. Geochim Cosmochim Acta 52:2121–2126. doi:10.1016/0016-7037(88)90192-5

    Article  Google Scholar 

  • Fernández-Prini R, Alvarez JL, Harvey AH (2004) Chapter 3 - aqueous solubility of volatile nonelectrolytes. In: Aqueous systems at elevated temperatures and pressures. Academic Press, London, pp 73–98. doi:10.1016/B978-012544461-3/50004-1

    Chapter  Google Scholar 

  • Guildner LA, Johnson DP, Jones FE (1976) Vapor pressure of water at its triple point. J Res Natl Bur Stand 80A:505–521

    Article  Google Scholar 

  • Han J, Zhou X, Liu H (2006) Ab initio simulaiton on the mechanism of proton transport in water. J Power Sources 161:1420–1427

    Article  Google Scholar 

  • Harvey AH, Friend DG (2004) Chapter 1 - physical properties of water. In: Aqueous systems at elevated temperatures and pressures. Academic Press, London, pp 1–27. doi:10.1016/B978-012544461-3/50002-8

    Google Scholar 

  • Helgeson HC, Kirkham DH (1972) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures, I. Summary of the thermodyamic/electrostatic properties of the solvent. Am J Sci 274:1089–1198

    Article  Google Scholar 

  • Helgeson HC, Kirkham DH (1974) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: II. Deby-Hückel parameters for activity coefficients and relative partial molal properties. Am J Sci 274:1199–1261

    Article  Google Scholar 

  • Helgeson HC, Kirkham DH (1976) Theoretical prediction of the thermodynamic properties of aqueous electrolytes at high pressures and temperatures. III. Equation of state for aqueous species at infinit dilution. Am J Sci 276:97–240

    Article  Google Scholar 

  • Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behavior of aqueous-electrolytes at high-pressures and temperatures .4. Calculation of activity-coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600-degrees-c and 5 kb. Am J Sci 281:1249–1516

    Article  Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000 °C. Comput Geosci 18:899–947

    Article  Google Scholar 

  • Kesler SE (2005) Ore-forming fluids. Elements 1:13–18

    Article  Google Scholar 

  • Palmer DA, Fernández-Prini R, Harvey AH (2004) Aqueous systems at elevated temperatures and pressures. Physical chemistry in water, steam and hydrothermal solutions. Academic Press, London. doi:10.1016/B978-012544461-3/50000-4

    Google Scholar 

  • Pan D, Spanu L, Harrison B, Sverjensky DA, Galli G (2013) Dielectric properties of water under extreme conditions and transport of carbonates in the deep earth. Proc Natl Acad Sci U S A 110:6646–6650. doi:10.1073/pnas.1221581110

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Reviews in mineralogy, vol 12. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Seward TM, Driesner T (2004) Chapter 5 – hydrothermal solution structure: experiments and computer simulations. In: Palmer DA, Fernández-Prini R, Harvey AH (eds) Aqueous systems at elevated temperatures and pressures. Academic Press, London, pp 149–182. doi:10.1016/B978-012544461-3/50006-5

    Chapter  Google Scholar 

  • Stein CA (2013) Heat flow of the earth. In: Global earth physics. American Geophysical Union, Washington, DC, pp 144–158. doi:10.1029/RF001p0144

    Google Scholar 

  • Sverjensky DA, Harrison B, Azzolini D (2014) Water in the deep earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 degrees C. Geochim Cosmochim Acta 129:125–145. doi:10.1016/j.gca.2013.12.019

    Article  Google Scholar 

  • Tremaine P, Zhang K, Bénézeth P, Xiao C (2004) Chapter 13 - ionization equilibria of acids and bases under hydrothermal conditions. In: Palmer DA, Fernández-Prini R, Harvey AH (eds) Aqueous systems at elevated temperatures and pressures. Academic Press, London, pp 441–492. doi:10.1016/B978-012544461-3/50014-4

    Chapter  Google Scholar 

  • Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci U S A 87:200–204

    Article  Google Scholar 

  • Wagner W, Pruss A (1993) International equations for the saturation properties of ordinary water substance – revised according to the international temperature scale of 1990 (vol 16, p 893, 1987). J Phys Chem Ref Data 22:783–787

    Article  Google Scholar 

  • Wagner W, Pruss A (1995) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substances for general and scientific use. J Phys Chem Ref Data 31

    Google Scholar 

  • Wagner W, Pruss A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535

    Article  Google Scholar 

  • Yardley BW, Bodnar RJ (2014) Fluids in the continental crust. Geochem Perspect 3:1–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Boily .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Boily, JF. (2017). Hydrothermal Solutions. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_66-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_66-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics