Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White

Polyoxometalates and Other Metal-Oxo Clusters in Nature

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_43-1


Metal-oxo clusters are broadly defined as polynuclear species (meaning containing two or more metal cations) with ligands of H2O, OH, and O2− and are molecular. Molecular means they have a distinct chemical formula. In the laboratory, they are ideally synthesized in water in a discrete form (meaning all clusters present in the aqueous synthesis solution have the exact same formula and geometry). Solubility of these clusters in water necessitates a negative or positive charge; and the metal-oxo clusters are isolated by crystallization with counterions of the opposite charge. Polyoxometalates, commonly known as POMs, are one subset of metal-oxo clusters. These are discrete polynuclear metal-oxo clusters specifically composed of the early d0 transition metals in their highest oxidation state with no valence electrons. These POM-forming metal cations include V5+, Nb5+, Ta5+, Mo6+, and W6+. POMs are negatively charged and possess predominantly O2−ligands. All metal-oxo...


Metal Oxide Surface Tungstic Acid Common Structural Motif Silicotungstic Acid Polynuclear Species 
This is a preview of subscription content, log in to check access


  1. Atencio, D., Coutinho, J. M. V., Doriguetto, A. C., Mascarenhas, Y. P., Ellena, J., and Ferrari, V. C., 2008. Menezesite, the first natural heteropolyniobate, from Cajati, Sao Paulo, Brazil: description and crystal structure. American Mineralogist, 93, 81–87.CrossRefGoogle Scholar
  2. Baes, C. F., and Mesmer, R. E., 1976. The Hydrolysis of Cations. New York: Wiley.Google Scholar
  3. Banfield, J. F., Welch, S. A., Zhang, H. Z., Ebert, T. T., and Penn, R. L., 2000. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 289, 751–754.CrossRefGoogle Scholar
  4. Barclay-Kamb, W., 1960. The crystal structure of zunyite. Acta Crystallographica, 13, 15–24.CrossRefGoogle Scholar
  5. Baumgartner, J., Dey, A., Bomans, P. H. H., Le Coadou, C., Fratzl, P., Sommerdijk, N. A. J. M., and Faivre, D., 2013. Nucleation and growth of magnetite from solution. Nature Materials, 12, 310–314.CrossRefGoogle Scholar
  6. Bolze, J., Peng, B., Dingenouts, N., Panine, P., Narayanan, T., and Ballauff, M., 2002. Formation and growth of amorphous colloidal CaCO3 precursor particles as detected by time-resolved SAXS. Langmuir, 18, 8364–8369.CrossRefGoogle Scholar
  7. Brugger, J., Meisser, N., Krivovichev, S., Armbruster, T., and Favreau, G., 2007. Mineralogy and crystal structure of bouazzerite from Bou Azzer, Anti-Atlas, Morocco: Bi-As-Fe nanoclusters containing Fe3+ in trigonal prismatic coordination. American Mineralogist, 92, 1630–1639.CrossRefGoogle Scholar
  8. Burns, P. C., Kubatko, K. A., Sigmon, G., Fryer, B. J., Gagnon, J. E., Antonio, M. R., and Soderholm, L., 2005. Actinyl peroxide nanospheres. Angewandte Chemie International Edition, 44, 2135–2139.CrossRefGoogle Scholar
  9. Casey, W. H., 2006. Large aqueous aluminum hydroxide molecules. Chemical Reviews, 106, 1–16.CrossRefGoogle Scholar
  10. Cooper, M. A., Abdu, Y. A., Ball, N. A., Cerny, P., Hawthorne, F. C., and Kristiansen, R., 2012. Aspedamite, ideally (12)(Fe3+, Fe2+)(3)Nb4[Th(Nb, Fe3+)12O42]{(H2O),(OH)}12, A new heteropolyniobate mineral species from the Herrebokasa Quarry, Aspedammen, Ostfold, Southern Norway: description and crystal structure. Canadian Mineralogist, 50, 793–804.CrossRefGoogle Scholar
  11. Friis, H., Larsen, A. O., Kampf, A. R., Evans, R. J., Selbekk, R. S., Sanchez, A. A., and Kihle, J., 2014. Peterandresenite, Mn4Nb6O19•14H2O, a new mineral containing the Lindqvist ion from a syenite pegmatite of the Larvik Plutonic Complex, southern Norway. European Journal of Mineralogy, 26, 567–576.CrossRefGoogle Scholar
  12. Furrer, G., Phillips, B. L., Ulrich, K. U., Pothig, R., and Casey, W. H., 2002. The origin of aluminum flocs in polluted streams. Science, 297, 2245–2247.CrossRefGoogle Scholar
  13. Gebauer, D., Volkel, A., and Colfen, H., 2008. Stable prenucleation calcium carbonate clusters. Science, 322, 1819–1822.CrossRefGoogle Scholar
  14. Gebauer, D., Kellermeier, M., Gale, J. D., Bergstrom, L., and Colfen, H., 2014. Pre-nucleation clusters as solute precursors in crystallisation. Chemical Society Reviews, 43, 2348–2371.CrossRefGoogle Scholar
  15. Gunter, J. R., Schmalle, H. W., and Dubler, E., 1990. Crystal-structure and properties of a new magnesium heteropoly-tungstate, Mg7(Mgw12O42)(OH)4(H2O)8, and the isostructural compounds of manganese, iron, cobalt and nickel. Solid State Ionics, 43, 85–92.CrossRefGoogle Scholar
  16. Kampf, A. R., Hughes, J. M., Marty, J., Nash, B. P., Chen, Y. S., and Steele, I. M., 2014a. Bluestreakite, K4Mg2(V4+ 2V5+ 8O28) · 14H2O, A new mixed-valence decavanadate mineral from the Blue Streak Mine, Montrose County, CO: crystal structure and descriptive mineralogy. The Canadian Mineralogist, 52, 1007–1018.CrossRefGoogle Scholar
  17. Kampf, A. R., Hughes, J. M., Nash, B. P., Wright, S. E., Rossman, G. R., and Marty, J., 2014b. Ophirite, Ca2Mg4[Zn2Mn2 3+(H2O)2 (Fe3+W9O34)2]•46H2O, a new mineral with a heteropolytungstate tri-lacunary Keggin anion. American Mineralogist, 99, 1045–1051.CrossRefGoogle Scholar
  18. Keggin, J. F., 1933. Structure of the molecule of 12-phosphotungstic acid. Nature, 131, 908–909.CrossRefGoogle Scholar
  19. Limanski, E. M., Piepenbrink, M., Droste, E., Burgemeister, K., and Krebs, B., 2002. Syntheses and X-ray characterization of novel [M4(H2O)2(XW9O34)2]n- (M = CuII, X = CuII; and M = FeIII, X = FeIII) polyoxotungstates. Journal of Cluster Science, 13, 369–379.CrossRefGoogle Scholar
  20. Mensinger, Z. L., Wang, W., Keszler, D. A., and Johnson, D. W., 2012. Oligomeric group 13 hydroxide compounds-a rare but varied class of molecules. Chemical Society Reviews, 41, 1019–1030.CrossRefGoogle Scholar
  21. Michel, F. M., Ehm, L., Antao, S. M., Lee, P. L., Chupas, P. J., Liu, G., Strongin, D. R., Schoonen, M. A. A., Phillips, B. L., and Parise, J. B., 2007. The structure of ferrihydrite, a nanocrystalline material. Science, 316, 1726–1729.CrossRefGoogle Scholar
  22. Nyman, M., and Burns, P. C., 2012. A comprehensive comparison of transition-metal and actinyl polyoxometalates. Chemical Society Reviews, 41, 7354–7367.CrossRefGoogle Scholar
  23. Panasci, A. F., Ohlin, C. A., Harley, S. J., and Casey, W. H., 2012. Rates of water exchange on the [Fe-4(OH)2(hpdta)2(H2O)4] molecule and its implications for geochemistry. Inorganic Chemistry, 51, 6731–6738.CrossRefGoogle Scholar
  24. Qiu, J., and Burns, P. C., 2013. Clusters of actinides with oxide, peroxide, or hydroxide bridges. Chemical Reviews, 113, 1097–1120.CrossRefGoogle Scholar
  25. Rustad, J. R., and Casey, W. H., 2012. Metastable structures and isotope exchange reactions in polyoxometalate ions provide a molecular view of oxide dissolution. Nature Materials, 11, 223–226.CrossRefGoogle Scholar
  26. Sadeghi, O., Zakharov, L. N., and Nyman, M., 2015. Aqueous formation and manipulation of the iron-oxo Keggin ion. Science, 347, 1359–1362.CrossRefGoogle Scholar
  27. Wang, W., Wentz, K. M., Hayes, S. E., Johnson, D. W., and Keszler, D. A., 2011. Synthesis of the hydroxide cluster [Al13(μ 3-OH6)(μ -OH)18(H2O)24]15+ from an aqueous solution. Inorganic Chemistry, 50, 4683–4685.CrossRefGoogle Scholar
  28. Winkler, J. R., and Gray, H. B., 2012. Electronic structures of oxo-metal ions. Structure and Bonding, 142, 17–28.CrossRefGoogle Scholar
  29. Zhu, M., Frandsen, C., Wallace, A. F., Legg, B., Khalid, S., Zhang, H., Morup, S., Banfield, J. F., and Waychunas, G. A., 2016. Precipitation pathways for ferrihydrite formation in acidic solutions. Geochimica et Cosmochimica Acta, 172, 247–264.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of ChemistryOregon State UniversityCorvallisUSA