Skip to main content

Partitioning and Partition Coefficients

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Partitioning is used in geochemistry to describe the equilibrium distribution of a chemical species between two coexisting phases. The concentration ratio of this species between the two phases (α and β) is defined as the partition coefficient (D) to quantitatively measure the equilibrium fractionation,

$$ {D}_i^{\alpha /\beta }={C}_i^{\alpha }/{C}_i^{\beta }, $$
(1)

where C denotes the concentration of species i in each phase. The species could be a cation, anion, or chemical compound, while the coexisting phases may be present as solids, liquids, or vapors. According to different forms of concentration, the partition coefficient can be defined by weight fractions, molar contents, and volume percentages of the species.

Different species may behave in distinct manners with a wide spectrum of partition coefficients. Depending on its relative affinity with the reference phase α, a species is classified as compatible when D α/β > 1 or incompatible when D α/β< 1. When the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Beattie P (1994) Systematics and energetics of trace–element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning. Chem Geol 117:57–71

    Article  Google Scholar 

  • Beattie P, Ford C, Russell D (1991) Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib Mineral Petrol 109:212–224

    Article  Google Scholar 

  • Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62:1175–1193

    Article  Google Scholar 

  • Birch F (1952) Elasticity and constitution of the Earth's interior. J Geophys Res 57:227–286

    Article  Google Scholar 

  • Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar silicate melts and hydrothermal solutions. Geochim Cosmochim Acta 55:193–209

    Article  Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454

    Article  Google Scholar 

  • Blundy JD, Robinson JAC, Wood BJ (1998) Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett 160:493–504

    Article  Google Scholar 

  • Boujibar A, Andrault D, Bouhifd MA, Bolfan-Casanova N, Devidal JL, Trcera N (2014) Metal-silicate partitioning of sulphur new experimental and thermodynamic constraints on planetary accretion. Earth Planet Sci Lett 391:42–54

    Article  Google Scholar 

  • Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249–253

    Article  Google Scholar 

  • Cameron M, Papike JJ (1981) Structural and chemical variations in pyroxenes. Am Mineral 66:1–50

    Google Scholar 

  • Chi H, Dasgupta R, Duncan MS, Shimizu N (2014) Partitioning of carbon between Fe–rich alloy melt and silicate melt in a magma ocean–implications for the abundance and origin of volatiles in Earth Mars and the Moon. Geochim Cosmochim Acta 139:447–471

    Article  Google Scholar 

  • Dalou C, Hirschmann MM, von der Handt A, Mosenfelder J, Armstrong LS (2017) Nitrogen and carbon fractionation during core–mantle differentiation at shallow depth. Earth Planet Sci Lett 458:141–151

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, McDonough WF, Spiegelman M, Withers AC (2009a) Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chemical Geology 262:57–77

    Article  Google Scholar 

  • Dasgupta R, Buono A, Whelan G, Walker D (2009b) High-pressure melting relations in Fe-C-S systems: implications for formation evolution and structure of metallic cores in planetary bodies. Geochim Cosmochim Acta 73:6678–6691

    Article  Google Scholar 

  • de Vries J, van Westrenen W, van den Berg A (2012) Radiogenic heat production in the Moon: constraints from plagioclase-melt trace element partitioning experiments. In: Lunar and Planetary Sci Conference, Houston, TX, USA vol 43, pp 1737

    Google Scholar 

  • Dohmen R, Blundy J (2014) A predictive thermodynamic model for element partitioning between plagioclase and melt as a function of pressure temperature and composition. Am J Sci 314:1319–1372

    Article  Google Scholar 

  • Evans TM, O’Neill HSC, Tuff J (2008) The influence of melt composition on the partitioning of REEs Y Sc Zr and Al between forsterite and melt in the system CMAS. Geochim Cosmochim Acta 72:5708–5721

    Article  Google Scholar 

  • Fincham CJB, Richardson FD (1954) The behaviour of sulphur in silicate and aluminate melts. Proc Roy Soc Lond Ser A Math Phys Sci, 223:40–62

    Google Scholar 

  • Gaetani GA, Grove TL (1995) Partitioning of rare earth elements between clinopyroxene and silicate melt Crystal–chemical controls. Geochim Cosmochim Acta 59:1951–1962

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1997) Partitioning of moderately siderophile elements among olivine silicate melt and sulfide melt: constraints on core formation in the Earth and Mars. Geochim Cosmochim Acta 61:1829–1846

    Article  Google Scholar 

  • Goldschmidt VM (1937) The principles of the distribution of chemical elements in minerals and rocks. J Chem Soc Lond 140:655–673

    Google Scholar 

  • Hart SR, Gaetani GA (2016) Experimental determination of Pb partitioning between sulfide melt and basalt melt as a function of P, T and X. Geochim Cosmochim Acta 185:9–20

    Article  Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048

    Article  Google Scholar 

  • Hazen RM, Finger LW (1979) Bulk modulus-volume relationship for cation-anion polyhedra. J Geophys Res Solid Earth 84:6723–6728

    Article  Google Scholar 

  • Hill E, Blundy JD, Wood BJ (2011) Clinopyroxene-melt trace element partitioning and the development of a predictive model for HFSE and Sc. Contrib Mineral Petrol 161:423–438

    Article  Google Scholar 

  • Kiseeva ES, Wood BJ (2013) A simple model for chalcophile element partitioning between sulphide and silicate liquids with geochemical applications. Earth Planet Sci Lett 383:68–81

    Article  Google Scholar 

  • Lee CTA, Luffi P, Le Roux V, Dasgupta R, Albaréde F, Leeman WP (2010) The redox state of arc mantle using Zn/Fe systematics. Nature 468:681–685

    Article  Google Scholar 

  • Lee CTA, Luffi P, Chin EJ, Bouchet R, Dasgupta R, Morton DM, Le Roux V, Yin QZ, Jin D (2012) Copper systematics in arc magmas and implications for crust–mantle differentiation. Science 336:64–68

    Article  Google Scholar 

  • Le Roux V, Dasgupta R, Lee CTA (2011) Mineralogical heterogeneities in the Earth’s mantle: constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters 307:395–408

    Article  Google Scholar 

  • Li J, Agee CB (2001) The effect of pressure temperature oxygen fugacity and composition on partitioning of nickel and cobalt between liquid Fe-Ni-S alloy and liquid silicate: implications for the Earth’s core formation. Geochim Cosmochim Acta 65:1821–1832

    Article  Google Scholar 

  • Li Y, Audétat A (2012) Partitioning of V Mn Co Ni Cu Zn As Mo Ag Sn Sb W Au Pb and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet Sci Lett 355:327–340

    Article  Google Scholar 

  • Li Y, Dasgupta R, Tsuno K, Monteleone B, Shimizu N (2016) Carbon and sulfur budget of the silicate Earth explained by accretion of differentiated planetary embryos. Nat Geosci 9:781–785

    Article  Google Scholar 

  • Liang Y (2008) Simple models for dynamic melting in an upwelling heterogeneous mantle column: analytical solutions. Geochim Cosmochim Acta 72:3804–3821

    Article  Google Scholar 

  • Liang Y, Sun C, Yao L (2013) A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks. Geochim Cosmochim Acta 102:246–260

    Article  Google Scholar 

  • Lundstrom CC, Shaw HF, Ryerson FJ, Williams Q, Gill J (1998) Crystal chemical control of clinopyroxene–melt partitioning in the Di-Ab-An system: implications for elemental fractionations in the depleted mantle. Geochim Cosmochim Acta 62:2849–2862

    Article  Google Scholar 

  • Ma Z (2001) Thermodynamic description for concentrated metallic solutions using interaction parameters. Metall Mater Trans B 32:87–103

    Article  Google Scholar 

  • Mallmann G, O’Neill HSC (2013) Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc Y and V between olivine and silicate melt. J Petrol 54:933–949

    Article  Google Scholar 

  • Matzen AK, Wood BJ, Baker MB, Stolper EM (2017) The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts. Nat Geosci. https://doi.org/10.1038/NGEO2968

  • Mollo S, Blundy JD, Giacomoni P, Nazzari M, Scarlato P, Coltorti M, Langone A, Andronico D (2017) Clinopyroxene-melt element partitioning during interaction between trachybasaltic magma and siliceous crust: Clues from quartzite enclaves at Mt. Etna volcano. Lithos 284:447–461

    Google Scholar 

  • Nagasawa H (1966) Trace element partition coefficient in ionic crystals. Science 152:767–769

    Article  Google Scholar 

  • Onuma N, Higuchi H, Wakita H, Nagasawa H (1968) Trace element partition between two pyroxenes and the host lava. Earth Planet Sci Lett 5:47–51

    Article  Google Scholar 

  • Papike JJ (1996) Pyroxene as a recorder of cumulate formational processes in asteroids Moon Mars Earth: reading the record with the ion microprobe. Am Mineral 81:525–544

    Article  Google Scholar 

  • Peters MT, Shaffer EE, Burnett DS, Kim SS (1995) Magnesium and titanium partitioning between anorthite and Type B CAI liquid: dependence on oxygen fugacity and liquid composition. Geochim Cosmochim Acta 59:2785–2796

    Article  Google Scholar 

  • Righter K, Drake MJ (2003) Partition coefficients at high pressure and temperature. Treatise Geochem 2:425–449

    Article  Google Scholar 

  • Ringwood AE (1966) Chemical evolution of the terrestrial planets. Geochim Cosmochim Acta 30:41–104

    Article  Google Scholar 

  • Ripley EM, Brophy JG, Li C (2002) Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe. Geochim Cosmochim Acta 66:2791–2800

    Article  Google Scholar 

  • Salters VJ, Longhi JE, Bizimis M (2002) Near mantle solidus trace element partitioning at pressures up to 3.4 GPa. Geochem Geophys Geosyst 3:1–23

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 32:751–767

    Article  Google Scholar 

  • Shaw DM (2000) Continuous (dynamic) melting theory revisited. Can Mineral 38:1041–1063

    Article  Google Scholar 

  • Shimizu K, Liang Y, Sun C, Jackson CR, Saal AE (2017) Parameterized lattice strain models for REE partitioning between amphibole and silicate melt. Am Mineral (in press). https://doi.org/10.2138/am-2017-6110

  • Sun C, Liang Y (2012) Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition water and temperature. Contrib Mineral Petrol 163:807–823

    Article  Google Scholar 

  • Sun C, Liang Y (2013a) The importance of crystal chemistry on REE partitioning between mantle minerals (garnet clinopyroxene orthopyroxene and olivine) and basaltic melts. Chem Geol 358:23–36

    Article  Google Scholar 

  • Sun C, Liang Y (2013b) Distribution of REE and HFSE between low-Ca pyroxene and lunar picritic melts around multiple saturation points. Geochim Cosmochim Acta 119:340–358

    Article  Google Scholar 

  • Sun C, Liang Y (2015) A REE-in-garnet-clinopyroxene thermobarometer for eclogites granulites and garnet peridotites. Chem Geol 393:79–92

    Article  Google Scholar 

  • Sun C, Liang Y (2017) A REE-in-plagioclase-clinopyroxene thermometer for crustal rocks. Contrib Mineral Petrol 172(4):1–20

    Article  Google Scholar 

  • Sun C, Graff M, Liang Y (2017) Trace element partitioning between plagioclase and silicate melt: the importance of temperature and plagioclase composition with implications for terrestrial and lunar magmatism. Geochim Cosmochim Acta 206:273–295

    Article  Google Scholar 

  • Tepley FJ, Lundstrom CC, McDonough WF, Thompson A (2010) Trace element partitioning between high-An plagioclase and basaltic to basaltic andesite melt at 1 atmosphere pressure. Lithos 118:82–94

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67:417–452

    Article  Google Scholar 

  • Trail D, Watson EB, Tailby ND (2011) The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480:79–82

    Article  Google Scholar 

  • Tsuno K, Frost DJ, Rubie DC (2013) Simultaneous partitioning of silicon and oxygen into the Earth’s core during early Earth differentiation. Geophys Res Lett 40:66–71

    Article  Google Scholar 

  • van Westrenen W, Draper DS (2007) Quantifying garnet-melt trace element partitioning using lattice–strain theory: new crystal-chemical and thermodynamic constraints. Contrib Mineral Petrol 154:717–730

    Article  Google Scholar 

  • van Westrenen W, Blundy JD, Wood BJ (2001a) High field strength element/rare earth element fractionation during partial melting in the presence of garnet: implications for identification of mantle heterogeneities. Geochem Geophys Geosyst 2(7), https://doi.org/10.1029/2000GC000133

  • van Westrenen W, Wood BJ, Blundy JD (2001b) A predictive thermodynamic model of garnet-melt trace element partitioning. Contrib Mineral Petrol 142:219–234

    Article  Google Scholar 

  • Wade J, Wood BJ (2001) The Earth’s ‘missing’ niobium may be in the core. Nature 409:75–78

    Article  Google Scholar 

  • Wade J, Wood BJ (2005) Core formation and the oxidation state of the Earth. Earth Planet Sci Lett 236:78–95

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433

    Article  Google Scholar 

  • Wohlers A, Wood BJ (2015) A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd. Nature 520:337–340

    Article  Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181

    Article  Google Scholar 

  • Wood BJ, Blundy JD (2003) Trace element partitioning under crustal and uppermost mantle conditions: the influences of ionic radius cation charge pressure and temperature. Treatise Geochem 2:568

    Google Scholar 

  • Wood BJ, Kiseeva ES (2015) Trace element partitioning into sulfide: how lithophile elements become chalcophile and vice versa. Am Mineral 100:2371–2379

    Article  Google Scholar 

  • Wood BJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441:825–833

    Article  Google Scholar 

  • Yao L, Sun C, Liang Y (2012) A parameterized model for REE distribution between low-Ca pyroxene and basaltic melts with applications to REE partitioning in low-Ca pyroxene along a mantle adiabat and during pyroxenite-derived melt and peridotite interaction. Contrib Mineral Petrol 164:261–280

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguang Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Sun, C. (2018). Partitioning and Partition Coefficients. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_347-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_347-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics