Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White

Partitioning and Partition Coefficients

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_347-1


Partitioning is used in geochemistry to describe the equilibrium distribution of a chemical species between two coexisting phases. The concentration ratio of this species between the two phases ( α and β) is defined as the partition coefficient ( D) to quantitatively measure the equilibrium fractionation,
$$ {D}_i^{\alpha /\beta }={C}_i^{\alpha }/{C}_i^{\beta }, $$
This is a preview of subscription content, log in to check access.


  1. Beattie P (1994) Systematics and energetics of trace–element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning. Chem Geol 117:57–71CrossRefGoogle Scholar
  2. Beattie P, Ford C, Russell D (1991) Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib Mineral Petrol 109:212–224CrossRefGoogle Scholar
  3. Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62:1175–1193CrossRefGoogle Scholar
  4. Birch F (1952) Elasticity and constitution of the Earth's interior. J Geophys Res 57:227–286CrossRefGoogle Scholar
  5. Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar silicate melts and hydrothermal solutions. Geochim Cosmochim Acta 55:193–209CrossRefGoogle Scholar
  6. Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454CrossRefGoogle Scholar
  7. Blundy JD, Robinson JAC, Wood BJ (1998) Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett 160:493–504CrossRefGoogle Scholar
  8. Boujibar A, Andrault D, Bouhifd MA, Bolfan-Casanova N, Devidal JL, Trcera N (2014) Metal-silicate partitioning of sulphur new experimental and thermodynamic constraints on planetary accretion. Earth Planet Sci Lett 391:42–54CrossRefGoogle Scholar
  9. Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249–253CrossRefGoogle Scholar
  10. Cameron M, Papike JJ (1981) Structural and chemical variations in pyroxenes. Am Mineral 66:1–50Google Scholar
  11. Chi H, Dasgupta R, Duncan MS, Shimizu N (2014) Partitioning of carbon between Fe–rich alloy melt and silicate melt in a magma ocean–implications for the abundance and origin of volatiles in Earth Mars and the Moon. Geochim Cosmochim Acta 139:447–471CrossRefGoogle Scholar
  12. Dalou C, Hirschmann MM, von der Handt A, Mosenfelder J, Armstrong LS (2017) Nitrogen and carbon fractionation during core–mantle differentiation at shallow depth. Earth Planet Sci Lett 458:141–151CrossRefGoogle Scholar
  13. Dasgupta R, Hirschmann MM, McDonough WF, Spiegelman M, Withers AC (2009a) Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chemical Geology 262:57–77CrossRefGoogle Scholar
  14. Dasgupta R, Buono A, Whelan G, Walker D (2009b) High-pressure melting relations in Fe-C-S systems: implications for formation evolution and structure of metallic cores in planetary bodies. Geochim Cosmochim Acta 73:6678–6691CrossRefGoogle Scholar
  15. de Vries J, van Westrenen W, van den Berg A (2012) Radiogenic heat production in the Moon: constraints from plagioclase-melt trace element partitioning experiments. In: Lunar and Planetary Sci Conference, Houston, TX, USA vol 43, pp 1737Google Scholar
  16. Dohmen R, Blundy J (2014) A predictive thermodynamic model for element partitioning between plagioclase and melt as a function of pressure temperature and composition. Am J Sci 314:1319–1372CrossRefGoogle Scholar
  17. Evans TM, O’Neill HSC, Tuff J (2008) The influence of melt composition on the partitioning of REEs Y Sc Zr and Al between forsterite and melt in the system CMAS. Geochim Cosmochim Acta 72:5708–5721CrossRefGoogle Scholar
  18. Fincham CJB, Richardson FD (1954) The behaviour of sulphur in silicate and aluminate melts. Proc Roy Soc Lond Ser A Math Phys Sci, 223:40–62Google Scholar
  19. Gaetani GA, Grove TL (1995) Partitioning of rare earth elements between clinopyroxene and silicate melt Crystal–chemical controls. Geochim Cosmochim Acta 59:1951–1962CrossRefGoogle Scholar
  20. Gaetani GA, Grove TL (1997) Partitioning of moderately siderophile elements among olivine silicate melt and sulfide melt: constraints on core formation in the Earth and Mars. Geochim Cosmochim Acta 61:1829–1846CrossRefGoogle Scholar
  21. Goldschmidt VM (1937) The principles of the distribution of chemical elements in minerals and rocks. J Chem Soc Lond 140:655–673Google Scholar
  22. Hart SR, Gaetani GA (2016) Experimental determination of Pb partitioning between sulfide melt and basalt melt as a function of P, T and X. Geochim Cosmochim Acta 185:9–20CrossRefGoogle Scholar
  23. Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048CrossRefGoogle Scholar
  24. Hazen RM, Finger LW (1979) Bulk modulus-volume relationship for cation-anion polyhedra. J Geophys Res Solid Earth 84:6723–6728CrossRefGoogle Scholar
  25. Hill E, Blundy JD, Wood BJ (2011) Clinopyroxene-melt trace element partitioning and the development of a predictive model for HFSE and Sc. Contrib Mineral Petrol 161:423–438CrossRefGoogle Scholar
  26. Kiseeva ES, Wood BJ (2013) A simple model for chalcophile element partitioning between sulphide and silicate liquids with geochemical applications. Earth Planet Sci Lett 383:68–81CrossRefGoogle Scholar
  27. Lee CTA, Luffi P, Le Roux V, Dasgupta R, Albaréde F, Leeman WP (2010) The redox state of arc mantle using Zn/Fe systematics. Nature 468:681–685CrossRefGoogle Scholar
  28. Lee CTA, Luffi P, Chin EJ, Bouchet R, Dasgupta R, Morton DM, Le Roux V, Yin QZ, Jin D (2012) Copper systematics in arc magmas and implications for crust–mantle differentiation. Science 336:64–68CrossRefGoogle Scholar
  29. Le Roux V, Dasgupta R, Lee CTA (2011) Mineralogical heterogeneities in the Earth’s mantle: constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters 307:395–408CrossRefGoogle Scholar
  30. Li J, Agee CB (2001) The effect of pressure temperature oxygen fugacity and composition on partitioning of nickel and cobalt between liquid Fe-Ni-S alloy and liquid silicate: implications for the Earth’s core formation. Geochim Cosmochim Acta 65:1821–1832CrossRefGoogle Scholar
  31. Li Y, Audétat A (2012) Partitioning of V Mn Co Ni Cu Zn As Mo Ag Sn Sb W Au Pb and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet Sci Lett 355:327–340CrossRefGoogle Scholar
  32. Li Y, Dasgupta R, Tsuno K, Monteleone B, Shimizu N (2016) Carbon and sulfur budget of the silicate Earth explained by accretion of differentiated planetary embryos. Nat Geosci 9:781–785CrossRefGoogle Scholar
  33. Liang Y (2008) Simple models for dynamic melting in an upwelling heterogeneous mantle column: analytical solutions. Geochim Cosmochim Acta 72:3804–3821CrossRefGoogle Scholar
  34. Liang Y, Sun C, Yao L (2013) A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks. Geochim Cosmochim Acta 102:246–260CrossRefGoogle Scholar
  35. Lundstrom CC, Shaw HF, Ryerson FJ, Williams Q, Gill J (1998) Crystal chemical control of clinopyroxene–melt partitioning in the Di-Ab-An system: implications for elemental fractionations in the depleted mantle. Geochim Cosmochim Acta 62:2849–2862CrossRefGoogle Scholar
  36. Ma Z (2001) Thermodynamic description for concentrated metallic solutions using interaction parameters. Metall Mater Trans B 32:87–103CrossRefGoogle Scholar
  37. Mallmann G, O’Neill HSC (2013) Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc Y and V between olivine and silicate melt. J Petrol 54:933–949CrossRefGoogle Scholar
  38. Matzen AK, Wood BJ, Baker MB, Stolper EM (2017) The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts. Nat Geosci.  https://doi.org/10.1038/NGEO2968
  39. Mollo S, Blundy JD, Giacomoni P, Nazzari M, Scarlato P, Coltorti M, Langone A, Andronico D (2017) Clinopyroxene-melt element partitioning during interaction between trachybasaltic magma and siliceous crust: Clues from quartzite enclaves at Mt. Etna volcano. Lithos 284:447–461Google Scholar
  40. Nagasawa H (1966) Trace element partition coefficient in ionic crystals. Science 152:767–769CrossRefGoogle Scholar
  41. Onuma N, Higuchi H, Wakita H, Nagasawa H (1968) Trace element partition between two pyroxenes and the host lava. Earth Planet Sci Lett 5:47–51CrossRefGoogle Scholar
  42. Papike JJ (1996) Pyroxene as a recorder of cumulate formational processes in asteroids Moon Mars Earth: reading the record with the ion microprobe. Am Mineral 81:525–544CrossRefGoogle Scholar
  43. Peters MT, Shaffer EE, Burnett DS, Kim SS (1995) Magnesium and titanium partitioning between anorthite and Type B CAI liquid: dependence on oxygen fugacity and liquid composition. Geochim Cosmochim Acta 59:2785–2796CrossRefGoogle Scholar
  44. Righter K, Drake MJ (2003) Partition coefficients at high pressure and temperature. Treatise Geochem 2:425–449CrossRefGoogle Scholar
  45. Ringwood AE (1966) Chemical evolution of the terrestrial planets. Geochim Cosmochim Acta 30:41–104CrossRefGoogle Scholar
  46. Ripley EM, Brophy JG, Li C (2002) Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe. Geochim Cosmochim Acta 66:2791–2800CrossRefGoogle Scholar
  47. Salters VJ, Longhi JE, Bizimis M (2002) Near mantle solidus trace element partitioning at pressures up to 3.4 GPa. Geochem Geophys Geosyst 3:1–23CrossRefGoogle Scholar
  48. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 32:751–767CrossRefGoogle Scholar
  49. Shaw DM (2000) Continuous (dynamic) melting theory revisited. Can Mineral 38:1041–1063CrossRefGoogle Scholar
  50. Shimizu K, Liang Y, Sun C, Jackson CR, Saal AE (2017) Parameterized lattice strain models for REE partitioning between amphibole and silicate melt. Am Mineral (in press).  https://doi.org/10.2138/am-2017-6110
  51. Sun C, Liang Y (2012) Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition water and temperature. Contrib Mineral Petrol 163:807–823CrossRefGoogle Scholar
  52. Sun C, Liang Y (2013a) The importance of crystal chemistry on REE partitioning between mantle minerals (garnet clinopyroxene orthopyroxene and olivine) and basaltic melts. Chem Geol 358:23–36CrossRefGoogle Scholar
  53. Sun C, Liang Y (2013b) Distribution of REE and HFSE between low-Ca pyroxene and lunar picritic melts around multiple saturation points. Geochim Cosmochim Acta 119:340–358CrossRefGoogle Scholar
  54. Sun C, Liang Y (2015) A REE-in-garnet-clinopyroxene thermobarometer for eclogites granulites and garnet peridotites. Chem Geol 393:79–92CrossRefGoogle Scholar
  55. Sun C, Liang Y (2017) A REE-in-plagioclase-clinopyroxene thermometer for crustal rocks. Contrib Mineral Petrol 172(4):1–20CrossRefGoogle Scholar
  56. Sun C, Graff M, Liang Y (2017) Trace element partitioning between plagioclase and silicate melt: the importance of temperature and plagioclase composition with implications for terrestrial and lunar magmatism. Geochim Cosmochim Acta 206:273–295CrossRefGoogle Scholar
  57. Tepley FJ, Lundstrom CC, McDonough WF, Thompson A (2010) Trace element partitioning between high-An plagioclase and basaltic to basaltic andesite melt at 1 atmosphere pressure. Lithos 118:82–94CrossRefGoogle Scholar
  58. Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67:417–452CrossRefGoogle Scholar
  59. Trail D, Watson EB, Tailby ND (2011) The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480:79–82CrossRefGoogle Scholar
  60. Tsuno K, Frost DJ, Rubie DC (2013) Simultaneous partitioning of silicon and oxygen into the Earth’s core during early Earth differentiation. Geophys Res Lett 40:66–71CrossRefGoogle Scholar
  61. van Westrenen W, Draper DS (2007) Quantifying garnet-melt trace element partitioning using lattice–strain theory: new crystal-chemical and thermodynamic constraints. Contrib Mineral Petrol 154:717–730CrossRefGoogle Scholar
  62. van Westrenen W, Blundy JD, Wood BJ (2001a) High field strength element/rare earth element fractionation during partial melting in the presence of garnet: implications for identification of mantle heterogeneities. Geochem Geophys Geosyst 2(7),  https://doi.org/10.1029/2000GC000133
  63. van Westrenen W, Wood BJ, Blundy JD (2001b) A predictive thermodynamic model of garnet-melt trace element partitioning. Contrib Mineral Petrol 142:219–234CrossRefGoogle Scholar
  64. Wade J, Wood BJ (2001) The Earth’s ‘missing’ niobium may be in the core. Nature 409:75–78CrossRefGoogle Scholar
  65. Wade J, Wood BJ (2005) Core formation and the oxidation state of the Earth. Earth Planet Sci Lett 236:78–95CrossRefGoogle Scholar
  66. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433CrossRefGoogle Scholar
  67. Wohlers A, Wood BJ (2015) A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd. Nature 520:337–340CrossRefGoogle Scholar
  68. Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181CrossRefGoogle Scholar
  69. Wood BJ, Blundy JD (2003) Trace element partitioning under crustal and uppermost mantle conditions: the influences of ionic radius cation charge pressure and temperature. Treatise Geochem 2:568Google Scholar
  70. Wood BJ, Kiseeva ES (2015) Trace element partitioning into sulfide: how lithophile elements become chalcophile and vice versa. Am Mineral 100:2371–2379CrossRefGoogle Scholar
  71. Wood BJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441:825–833CrossRefGoogle Scholar
  72. Yao L, Sun C, Liang Y (2012) A parameterized model for REE distribution between low-Ca pyroxene and basaltic melts with applications to REE partitioning in low-Ca pyroxene along a mantle adiabat and during pyroxenite-derived melt and peridotite interaction. Contrib Mineral Petrol 164:261–280CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Earth, Environmental and Planetary SciencesRice UniversityHoustonUSA