Skip to main content

Oxygen Isotopes

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Natural oxygen is a mixture of three stable isotopes 16O (99.762%), 17O (0.038%), and 18O (0.200%). Isotope ratios of 17O/16O and 18O/16O normally vary in natural materials by up to 5% and 10%, respectively, which are mass-dependent isotope fractionation . Mass-independent isotope fractionations also occur in oxygen for extraterrestrial materials and atmospheric molecules. These isotope fractionations are useful as tracers in geochemical and cosmochemical reactions and are applied to diverse geochemical topics as the origin of the solar system and the evolution of the atmosphere, hydrosphere, and lithosphere and paleoclimate .

Introduction

Oxygen is the third most abundant element in the universe and the most abundant element of the terrestrial planets. The presence of oxygen in both gaseous and solid phases makes oxygen isotopes (terrestrial relative abundances: 16O = 99.762%, 17O = 0.038%, and 18O = 0.200%) important tracers of various fractionation processes in the solar...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon fractionation factors applicable to geologic systems. Rev Mineral Geochem 43:1–81

    Article  Google Scholar 

  • Clayton RN (1993) Oxygen isotopes in meteorites. Annu Rev Earth Planet Sci 21:115–149

    Article  Google Scholar 

  • Clayton DD (2003) Handbook of isotopes in the cosmos: hydrogen to gallium. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Clayton RN, Grossman L, Mayeda TK (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–488

    Article  Google Scholar 

  • Coplen TB, Kendall C, Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236–238

    Article  Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364

    Article  Google Scholar 

  • Eiler JM (2007) ‘Clumped-isotope’ geochemistry – the study of naturally-occurring, multiply-substituted isotopologues. Earth Planet Sci Lett 262:309–327

    Article  Google Scholar 

  • Farquhar J, Johnston DT (2008) The oxygen cycle of the terrestrial planets: insights into the processing and history of oxygen in surface environments. Rev Mineral Geochem 68:463–492

    Article  Google Scholar 

  • Floss C, Haenecour P (2016) Presolar silicate grains: abundances, isotopic and elemental compositions, and the effects of secondary processing. Geochem J 50:3–25

    Article  Google Scholar 

  • Gat JR, Gonfiantini R (1981) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. Technical report series no. 210, International Atomic Energy Agency, Vienna, 337 pp

    Google Scholar 

  • Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble EA, Schrag D, Eiler JM (2006) 13C -18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456

    Article  Google Scholar 

  • Gröning M, Van Duren M, Andreescu L (2007) Metrological characteristics of the conventional measurement scales for hydrogen and oxygen stable isotope amount ratios: the δ-scales. In: Fajgelj A, Belli M, Sansone U (eds) Combining and reporting analytical results. Proceedings of an international workshop on “combining and reporting analytical results: the role of traceability and uncertainty for comparing analytical results”, Royal Society of Chemistry, Rome, 6–8 Mar 2006, pp 62–72

    Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of ice ages. Science 194:1121–1132

    Article  Google Scholar 

  • Hoefs J (2004) Stable isotope geochemistry. Springer, Berlin/Heidelberg, p 244

    Book  Google Scholar 

  • Hudson JD, Anderson TF (1989) Ocean temperatures and isotopic compositions through time. Trans R Soc Edinb Earth Sci 80:183–192

    Article  Google Scholar 

  • Johnson LR, Sharp ZD, Galewsky J, Strong M, Van Pelt AD, Dong F, Noone D (2011) Isotope correction for laser instrument measurement bias at low water vapor concentration using flasks: application to measurements from Mauna Loa Observatory, Hawaii. Rapid Commun Mass Spectrom 25:608–616

    Article  Google Scholar 

  • Kawamura K, Parrenin F, Lisiecki L, Uemura R, Vimeux F, Severinghaus JP, Hutterli MA, Nakazawa T, Aoki S, Jouzel J, Raymo ME, Matsumoto K, Nakata H, Motoyama H, Fujita S, Goto-Azuma K, Fujii Y, Watanabe O (2007) Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448:912–916

    Article  Google Scholar 

  • Kobayashi S, Imai H, Yurimoto H (2003) New extreme 16O-rich reservoir in the early solar system. Geochem J 37:663–669

    Article  Google Scholar 

  • Komatsu DD, Ishimura T, Nakagawa F, Tsunogai U (2008) Determination of the 15N/14N, 17O/16O, and 18O/16O ratios of nitrous oxide by using continuous-flow isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom 22:1587–1596

    Article  Google Scholar 

  • McKeegan KD, Leshin LA (2001) Stable isotope variations in extraterrestrial materials. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, vol 43. Mineralogical Society of America, Washington, DC, pp 279–318

    Google Scholar 

  • McKeegan KD, Kallio APA, Heber VS, Jarzebinski G, Mao PH, Coath CD, Kunihiro T, Wiens RC, Nordholt JE, Moses RW Jr, Reisenfeld DB, Jurewicz AJG, Burnett DS (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332:1528–1532

    Article  Google Scholar 

  • Nier AO (1940) A mass spectrometer for routine isotope abundance measurements. Rev Sci Instrum 11:212–216

    Article  Google Scholar 

  • Sakamoto N, Seto Y, Itoh S, Kuramoto K, Fujino K, Nagashima K, Krot AN, Yurimoto H (2007) Remnants of the early solar system water enriched in heavy oxygen isotopes. Science 317:231–233

    Article  Google Scholar 

  • Steig EJ, Gkinis V, Schauer AJ, Schoenemann SW, Samek K, Hoffnagle J, Dennis KJ, Tan SM (2014) Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance. Atmos Meas Tech 7:2421–2435

    Article  Google Scholar 

  • Thiemens MH (2006) History and applications of mass-independent isotope effects. Annu Rev Earth Planet Sci 34:217–262

    Article  Google Scholar 

  • Tinsley BM, Cameron AGW (1974) Possible influence of comets on the chemical evolution of the Galaxy. Astrophys Space Sci 31:31–35

    Article  Google Scholar 

  • Urey HC (1948) Oxygen isotopes in nature and in the laboratory. Science 108:489–495

    Article  Google Scholar 

  • Warren PH (2011) Stable isotopes and the noncarbonaceous derivation of ureilites, in common with nearly all differentiated planetary materials. Geochim Cosmochim Acta 75:6912–6926

    Article  Google Scholar 

  • Young ED, Coutts DW, Kapitan D (1998) UV laser ablation and IRM-GCMS microanalysis of 18O/16O and 17O/16O with application to a calcium–aluminium-rich inclusion from the Allende meteorite. Geochim Cosmochim Acta 62:3161–3168

    Article  Google Scholar 

  • Yurimoto H, Nagasawa H, Mori Y, Matsubaya O (1994) Micro-distribution of oxygen isotopes in a refractory inclusion from the Allende meteorite. Earth Planet Sci Lett 128:47–53

    Article  Google Scholar 

  • Yurimoto H, Ito M, Nagasawa H (1998) Oxygen isotope exchange between refractory inclusion in Allende and solar nebula gas. Science 282:1874–1877

    Article  Google Scholar 

  • Yurimoto H, Nagashima K, Kunihiro T (2003) High precision isotope micro-imaging of materials. Appl Surf Sci 203–204:793–797

    Article  Google Scholar 

  • Yurimoto H, Kuramoto K, Krot AN, Scott ERD, Cuzzi JN, Thiemens MH, Lyons JR (2007) Origin and evolution of oxygen isotopic compositions of the solar system. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 849–862

    Google Scholar 

  • Yurimoto H, Krot AN, Choi B-G, Aleon J, Kunihiro T, Brearley AJ (2008) Oxygen isotopes of chondritic components. Rev Mineral Geochem 68:141–186

    Article  Google Scholar 

  • Yurimoto H, Abe K, Abe M, Ebihara M, Fujimura A, Hashiguchi M, Hashizume K, Ireland TR, Itoh S, Katayama J, Kato C, Kawaguchi J, Kawasaki N, Kitajima F, Kobayashi S, Meike T, Mukai T, Nagao K, Nakamura T, Naraoka H, Noguchi T, Okazaki R, Park C, Sakamoto N, Seto Y, Takei M, Tsuchiyama A, Uesugi M, Wakaki S, Yada T, Yamamoto K, Yoshikawa M, Zolensky ME (2011) Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science 333:1116–1119

    Article  Google Scholar 

  • Zinner E (2014) Presolar grains. In: Treatise on geochemistry, vol 1, 2nd edn. Elsevier, Amsterdam, pp 181–213

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisayoshi Yurimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yurimoto, H. (2018). Oxygen Isotopes. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_346-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_346-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics