Definition
Natural oxygen is a mixture of three stable isotopes 16O (99.762%), 17O (0.038%), and 18O (0.200%). Isotope ratios of 17O/16O and 18O/16O normally vary in natural materials by up to 5% and 10%, respectively, which are mass-dependent isotope fractionation . Mass-independent isotope fractionations also occur in oxygen for extraterrestrial materials and atmospheric molecules. These isotope fractionations are useful as tracers in geochemical and cosmochemical reactions and are applied to diverse geochemical topics as the origin of the solar system and the evolution of the atmosphere, hydrosphere, and lithosphere and paleoclimate .
Introduction
Oxygen is the third most abundant element in the universe and the most abundant element of the terrestrial planets. The presence of oxygen in both gaseous and solid phases makes oxygen isotopes (terrestrial relative abundances: 16O = 99.762%, 17O = 0.038%, and 18O = 0.200%) important tracers of various fractionation processes in the solar...
References
Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon fractionation factors applicable to geologic systems. Rev Mineral Geochem 43:1–81
Clayton RN (1993) Oxygen isotopes in meteorites. Annu Rev Earth Planet Sci 21:115–149
Clayton DD (2003) Handbook of isotopes in the cosmos: hydrogen to gallium. Cambridge University Press, Cambridge
Clayton RN, Grossman L, Mayeda TK (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–488
Coplen TB, Kendall C, Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236–238
Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364
Eiler JM (2007) ‘Clumped-isotope’ geochemistry – the study of naturally-occurring, multiply-substituted isotopologues. Earth Planet Sci Lett 262:309–327
Farquhar J, Johnston DT (2008) The oxygen cycle of the terrestrial planets: insights into the processing and history of oxygen in surface environments. Rev Mineral Geochem 68:463–492
Floss C, Haenecour P (2016) Presolar silicate grains: abundances, isotopic and elemental compositions, and the effects of secondary processing. Geochem J 50:3–25
Gat JR, Gonfiantini R (1981) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. Technical report series no. 210, International Atomic Energy Agency, Vienna, 337 pp
Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble EA, Schrag D, Eiler JM (2006) 13C -18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456
Gröning M, Van Duren M, Andreescu L (2007) Metrological characteristics of the conventional measurement scales for hydrogen and oxygen stable isotope amount ratios: the δ-scales. In: Fajgelj A, Belli M, Sansone U (eds) Combining and reporting analytical results. Proceedings of an international workshop on “combining and reporting analytical results: the role of traceability and uncertainty for comparing analytical results”, Royal Society of Chemistry, Rome, 6–8 Mar 2006, pp 62–72
Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of ice ages. Science 194:1121–1132
Hoefs J (2004) Stable isotope geochemistry. Springer, Berlin/Heidelberg, p 244
Hudson JD, Anderson TF (1989) Ocean temperatures and isotopic compositions through time. Trans R Soc Edinb Earth Sci 80:183–192
Johnson LR, Sharp ZD, Galewsky J, Strong M, Van Pelt AD, Dong F, Noone D (2011) Isotope correction for laser instrument measurement bias at low water vapor concentration using flasks: application to measurements from Mauna Loa Observatory, Hawaii. Rapid Commun Mass Spectrom 25:608–616
Kawamura K, Parrenin F, Lisiecki L, Uemura R, Vimeux F, Severinghaus JP, Hutterli MA, Nakazawa T, Aoki S, Jouzel J, Raymo ME, Matsumoto K, Nakata H, Motoyama H, Fujita S, Goto-Azuma K, Fujii Y, Watanabe O (2007) Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448:912–916
Kobayashi S, Imai H, Yurimoto H (2003) New extreme 16O-rich reservoir in the early solar system. Geochem J 37:663–669
Komatsu DD, Ishimura T, Nakagawa F, Tsunogai U (2008) Determination of the 15N/14N, 17O/16O, and 18O/16O ratios of nitrous oxide by using continuous-flow isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom 22:1587–1596
McKeegan KD, Leshin LA (2001) Stable isotope variations in extraterrestrial materials. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, vol 43. Mineralogical Society of America, Washington, DC, pp 279–318
McKeegan KD, Kallio APA, Heber VS, Jarzebinski G, Mao PH, Coath CD, Kunihiro T, Wiens RC, Nordholt JE, Moses RW Jr, Reisenfeld DB, Jurewicz AJG, Burnett DS (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332:1528–1532
Nier AO (1940) A mass spectrometer for routine isotope abundance measurements. Rev Sci Instrum 11:212–216
Sakamoto N, Seto Y, Itoh S, Kuramoto K, Fujino K, Nagashima K, Krot AN, Yurimoto H (2007) Remnants of the early solar system water enriched in heavy oxygen isotopes. Science 317:231–233
Steig EJ, Gkinis V, Schauer AJ, Schoenemann SW, Samek K, Hoffnagle J, Dennis KJ, Tan SM (2014) Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance. Atmos Meas Tech 7:2421–2435
Thiemens MH (2006) History and applications of mass-independent isotope effects. Annu Rev Earth Planet Sci 34:217–262
Tinsley BM, Cameron AGW (1974) Possible influence of comets on the chemical evolution of the Galaxy. Astrophys Space Sci 31:31–35
Urey HC (1948) Oxygen isotopes in nature and in the laboratory. Science 108:489–495
Warren PH (2011) Stable isotopes and the noncarbonaceous derivation of ureilites, in common with nearly all differentiated planetary materials. Geochim Cosmochim Acta 75:6912–6926
Young ED, Coutts DW, Kapitan D (1998) UV laser ablation and IRM-GCMS microanalysis of 18O/16O and 17O/16O with application to a calcium–aluminium-rich inclusion from the Allende meteorite. Geochim Cosmochim Acta 62:3161–3168
Yurimoto H, Nagasawa H, Mori Y, Matsubaya O (1994) Micro-distribution of oxygen isotopes in a refractory inclusion from the Allende meteorite. Earth Planet Sci Lett 128:47–53
Yurimoto H, Ito M, Nagasawa H (1998) Oxygen isotope exchange between refractory inclusion in Allende and solar nebula gas. Science 282:1874–1877
Yurimoto H, Nagashima K, Kunihiro T (2003) High precision isotope micro-imaging of materials. Appl Surf Sci 203–204:793–797
Yurimoto H, Kuramoto K, Krot AN, Scott ERD, Cuzzi JN, Thiemens MH, Lyons JR (2007) Origin and evolution of oxygen isotopic compositions of the solar system. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 849–862
Yurimoto H, Krot AN, Choi B-G, Aleon J, Kunihiro T, Brearley AJ (2008) Oxygen isotopes of chondritic components. Rev Mineral Geochem 68:141–186
Yurimoto H, Abe K, Abe M, Ebihara M, Fujimura A, Hashiguchi M, Hashizume K, Ireland TR, Itoh S, Katayama J, Kato C, Kawaguchi J, Kawasaki N, Kitajima F, Kobayashi S, Meike T, Mukai T, Nagao K, Nakamura T, Naraoka H, Noguchi T, Okazaki R, Park C, Sakamoto N, Seto Y, Takei M, Tsuchiyama A, Uesugi M, Wakaki S, Yada T, Yamamoto K, Yoshikawa M, Zolensky ME (2011) Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science 333:1116–1119
Zinner E (2014) Presolar grains. In: Treatise on geochemistry, vol 1, 2nd edn. Elsevier, Amsterdam, pp 181–213
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this entry
Cite this entry
Yurimoto, H. (2018). Oxygen Isotopes. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_346-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-39193-9_346-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39193-9
Online ISBN: 978-3-319-39193-9
eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences