Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White

Mineral Genesis

  • Alain J. Baronnet
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_342-1


Mineral genesis addresses the questions of where, why, and how minerals form and disappear, on and in the Earth (see also Crystal Growth).

The Crystalline Earth and Its Dynamics

Minerals, essentially as natural crystals, are the major constituents of the core, the mantle, and the crust of our planet. In the mantle, they form the viscous solid matter involved in slow convective movements which act as the force-transmitting medium for plate tectonics. As such, minerals undergo phase transitions, polymorphic transitions, and more generally nucleation, growth as well as resorption. This occurs in response to local and/or temporal changes in pressure/stress, temperature, and chemical composition. Internal heat production of the Earth is ultimately the cause of mineral dynamics. Most active and diverse kinetic phenomena of these kinds are expected to take place where temperature gradients and chemical gradients are prominent, i.e., in and on the crust.

Mineral growthin the...
This is a preview of subscription content, log in to check access.


  1. Baronnet A (1982) Ostwald ripening in solution. The case of calcite and mica. Estud Geol 38:185–198Google Scholar
  2. Baronnet A (1984) Growth kinetics of the silicates. A review of basic concepts. Fortschr Mineral 62:187–232Google Scholar
  3. Bravais A (1866) Etudes Cristallographiques. Gauthier-Villars, ParisGoogle Scholar
  4. Burton WK, Cabrera N, Frank FC (1951) The growth of crystals and the equilibrium structure of their surfaces. Philos Trans R Soc Lond 243:299–358CrossRefGoogle Scholar
  5. Cölfen H, Antonietti M (2008) Mesocrystals and nonclassical crystallization. Wiley, Chichester, p 288CrossRefGoogle Scholar
  6. Cordier P, Leroux H (2008) Ce que disent les minéraux. Belin-Pour la science, ParisGoogle Scholar
  7. De Yoreo et al (2015) Crystallization by particle attachment in synthetic, biogenic, and geologic environment. Science 349(6247):aaa6760CrossRefGoogle Scholar
  8. Dekeyser W, Amelinckx S (1955) Les dislocations et la croissance des cristaux. Masson, ParisGoogle Scholar
  9. Donnay JDH, Harker D (1937) A new law of crystal morphology extending the law of Bravais. Am Mineral 22:446–467Google Scholar
  10. Garcia-Ruiz JM, Melero-Garcia E, Hyde ST (2009) Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323:362–365CrossRefGoogle Scholar
  11. Garcia-Ruiz JM, Nakouzi E, Kotopoulou E, Tamborino L, Steinbock O (2017) Biomimetic mineral self-organization from silica-rich spring waters. Sci Adv 3:e1602285CrossRefGoogle Scholar
  12. Grigor’ev DP (1965) Ontogeny of minerals. Israel Program for Scientific Translations, JerusalemGoogle Scholar
  13. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals. Acta Crystallogr 8:49–52CrossRefGoogle Scholar
  14. Jambon A (1980) Isotopic fractionation: a kinetic model for crystals growing from silicate melts. Geochim Cosmochim Acta 44:1373–1380CrossRefGoogle Scholar
  15. Kirkpatrick RJ (1983) Theory of nucleation in silicate melts. Am Mineral 68:66–77Google Scholar
  16. Kirkpatrick RJ, Kuo LC, Melchior J (1981) Crystal growth in incongruently-melting compositions: programmed cooling experiments with diopside. Am Mineral 66:223–241Google Scholar
  17. Kostov I (1965) Crystal habit and mineral genesis. Bull Strasimir Dimitrov Inst Geol 14:33–49Google Scholar
  18. Kostov I, Kostov RI (1999) Crystal habit of minerals, Bulgarian academic monographs 1. Prof. Marin Drinov Academic Publishing House and Pensoft, Sofia, p 415Google Scholar
  19. Ostwald W (1897) Studien über die Bildung und Umwandlung fester Körper. Z Phys Chem 22:289–330Google Scholar
  20. Paquette J, Reeder RJ (1995) Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim Cosmochim Acta 59:735–749CrossRefGoogle Scholar
  21. Stranski IN (1928) Zur Theorie der Kristallswachstums. Z Phys Chem A 136:259–278Google Scholar
  22. Sunagawa I (1977) Natural crystallization. J Cryst Growth 42:214–223CrossRefGoogle Scholar
  23. Sunagawa I (1984) Growth of crystals in Nature. In: Sunagawa I (ed) Materials science of the Earth’s interior. Terra Scientific Publication Company, Tokyo, pp 61–103Google Scholar
  24. Sunagawa I (1987) Morphology of Minerals. In: Sunagawa I (ed) Morphology of crystals: part B. Terra Scientific Publication Company, Tokyo, pp 509–587Google Scholar
  25. Welsch B, Faure F, Famin V, Baronnet A, Bachélery P (2013) Dendritic crystallization; a single process for all the textures of olivine in basalts? J Petrol 54(3):539–574CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Aix-Marseille Université, CNRS, CINAMCampus LuminyMarseilleFrance