Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White

Ionic Radii

  • Hugh Rollinson
  • Jacob Adetunji
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_340-1

Definition and Assumptions

An ion is an atom with an electrical charge, achieved either by gaining or losing one or more electrons. The ionic radius of the ion (r ion ) of an atom (either a cation or anion) is a measure of the size of a spherical ion. The ionic radius is similar to but different from the atomic radius for the ionic size is dependent on the distribution of its outermost electrons and is inversely proportional to the effective nuclear charge experienced by ions. It is calculated from the internuclear distance between a cation and a neighboring anion in a lattice. Ionic radii are typically reported in picometers (pm, 1 × 10 −12 m) or in the older literature as Angstroms (Å), where 1 Å = 100 pm. A typical range of ionic radii is 25–170 pm for four to eightfold coordination (see Table 1).
Table 1

Ionic radii for petrologically important major and trace elements (Data from Shannon 1976).

This is a preview of subscription content, log in to check access.


  1. Bartelmehs KL, Gibbs GV, Boisen MB Jr (1989) Bond length and bonded-radii variations in sulfide molecules and crystals containing main-group elements: a comparison with oxides. Am Mineral 74:620–626Google Scholar
  2. Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210(3–4):383–397.  https://doi.org/10.1016/S0012-821X(03)00129-8 CrossRefGoogle Scholar
  3. Ghosh DC, Biswas R (2003) Theoretical calculation of absolute radii of atoms and ions. Part 2. The ionic radii. Int J Mol Sci 4:379–407CrossRefGoogle Scholar
  4. Goldschmidt VM (1926) Die gesetze der krystallochemie. Naturwissenschaften 14(21):477–485CrossRefGoogle Scholar
  5. Landé CA (1920) Uber die Grösse der Atome. Z Phys 1(3):191–197CrossRefGoogle Scholar
  6. Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry, vol 18. Cornell University Press, IthacaGoogle Scholar
  7. Shannon RD (1976) Revised ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767CrossRefGoogle Scholar
  8. Shannon RD (1981) Bond distances in sulphides and a preliminary table of sulfide crystal radii. In: O’Keeffe M, Navrotsky A (eds) Structure and bonding in crystals, vol II. Academic, New York, pp 53–70CrossRefGoogle Scholar
  9. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B25:925–946.  https://doi.org/10.1107/S0567740869003220 CrossRefGoogle Scholar
  10. Tiepolo M, Vannucci R, Oberti R, Foley SF, Botazzi P, Zanetti A (2000) Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal-chemical constraints and implications for natural systems. Earth Planet Sci Lett 176:185–201CrossRefGoogle Scholar
  11. Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure and ionic radius, and an elastic model for diffusion in silicates. Contrib Mineral Petrol 141:687–703CrossRefGoogle Scholar
  12. Wasastjerna JA (1923) On the radii of ions. Comment Phys-Math Soc Sci Fenn 1(38):1–25Google Scholar
  13. White WM (2013) Geochemistry. Wiley-Blackwell, Oxford, 660 ppGoogle Scholar
  14. Whittaker EJW, Muntus R (1970) Ionic radii for use in geochemistry. Geochim Cosmochim Acta 34:945–956CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.GeoscienceUniversity of DerbyDerbyUK