Skip to main content

Laser Ablation – Inductively Coupled Plasma Mass Spectrometry

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Definition

Mass spectrometers utilizing atmospheric pressure Ar-ICP as an ion source (ICP-MS) have been widely used for both element and isotopic analyses for geochemical samples such as rocks, minerals, aquatic solutions, as well as gaseous samples. Since the ICP is operating under atmospheric pressure, various sample introduction techniques can be applied for analysis. Among these, the laser ablation sampling technique is likely to become a method of choic e for many geochemists because it is a highly sensitive and versatile method of elemental and isotopic analyses. Laser ablation is the process of removing materials from the surface of solid materials by the irradiation of a laser beam. Laser-induced sample aerosols and vapors will be introduced to the ICP, and the ionized elements are extracted into a high-vacuum and separated by mass. With the LA-ICPMS technique, direct elemental and isotopic analyses can be made without chemical...

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Albarède F, Telouk P, Blichert-Toft J, Boyet M, Agranier A, Nelson B (2004) Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochim Cosmochim Acta 68:2725–2744

    CrossRef  Google Scholar 

  • Be’eri-Shlevin Y, Katzir Y, Blichert-Toft J, Kleinhanns IC, Whitehouse MJ (2010) Nd–Sr–Hf–O isotope provinciality in the northernmost Arabian–Nubian shield: implications for crustal evolution. Contrib Mineral Petrol 160:181–201

    CrossRef  Google Scholar 

  • Becker JS (2007) Inorganic mass spectrometry: principles and applications. Wiley Blackwell and Wiley VCH, New Jersey, United states

    Google Scholar 

  • Becker JS, Zoriy M, Becker JS, Dobrowolska J, Matusch A (2007) Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in elemental imaging of biological tissues and in proteomics. J Anal At Spectrom 22:736–744

    CrossRef  Google Scholar 

  • Becker JS, Breuer U, Hsieh HF, Osterholt T, Kumtabtim U, Wu B, Matusch A, Caruso JA, Qin Z (2010) Bioimaging of metals and biomolecules in mouse heart by laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectrometry. Anal Chem 82:9528–9533

    CrossRef  Google Scholar 

  • Chandra S, Morrison GH (1995) Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry. Int J Mass Spectrom 143:161–176

    CrossRef  Google Scholar 

  • Cottle JM, Hortswood MSA, Parrish RR (2009) A new approach to single shot laser ablation analysis and its application to in situ Pb/U geochronology. J Anal Atom Spectrom 24:1355–1363

    CrossRef  Google Scholar 

  • Crowley JL, Myers JS, Sylvester PJ, Cox RA (2005) Detrital zircon from the Jack Hills and Mount Narryer, Western Australia: evidence for diverse 14.0 Ga source rocks. J Geol 113:239–263

    CrossRef  Google Scholar 

  • Donner E, Howard DL, de Jonge MD, Paterson D, Cheah MH, Naidu R, Lombi E (2011) X-ray absorption and micro X-ray fluorescence spectroscopy investigation of copper and zinc speciation in biosolids. Environ Sci Technol 45:7249–7257

    CrossRef  Google Scholar 

  • Duckworth HE, Barber RC, Venkatasubramanian LVS (1986) Mass spectroscopy, 2nd edn. Cambridge University Press, Cambridge, MA, 74pp

    Google Scholar 

  • Durrant JF (1999) Laser ablation inductively coupled mass spectrometry: achievements, problems, prospects. J Anal At Spectrom 12:1385–1403

    CrossRef  Google Scholar 

  • Fernandez B, Claverie F, Pecheyran C, Alexis J, Donard OFX (2008) Direct determination of trace elements in powdered samples by in-cell isotope dilution femtosecond laser ablation ICPMS. Anal Chem 80:6981–6994

    CrossRef  Google Scholar 

  • Fricker MB, Kutscher D, Aeschlimann B, Frommer J, Dietiker R, Bettmer J, Günther D (2011) High spatial resolution trace element analysis by LA-ICP-MS using a novel ablation cell for multiple or large samples. Int J Mass Spectrom 307:39–45

    CrossRef  Google Scholar 

  • Fukuda N, Hokura A, Kitajima N, Terada Y, Saito H, Abe T, Nakai I (2008) Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp. gemmifera, using high-energy synchrotron radiation. J Anal At Spectrom 23:1068–1075

    CrossRef  Google Scholar 

  • Ghazi AM, Wataha CJ, O’Dell NL, Singh BB, Simmons R, Shuttleworth S (2002) Quantitative concentration profiling of nickel in tissues around metal implants: a new biomedical application of laser ablation sector field ICP-MS. J Anal At Spectrom 17:1295–1299

    CrossRef  Google Scholar 

  • Gordalíza EM, Giesen C, Lázaro A, Fernández DE, Humanes B, Cañas B, Panne U, Tejedor A, Jakubowski A, Gómez-Gómez MM (2011) Elemental bioimaging in kidney by LA-ICP-MS as a tool to study nephrotoxicity and renal protective strategies in cisplatin therapies. Anal Chem 83:7933–7940

    CrossRef  Google Scholar 

  • Guillong M, Günther D (2002) Effect of particle size distribution on ICP-induced elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 17:831–837

    CrossRef  Google Scholar 

  • Guillong M, Horn I, Günther D (2003) A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd: YAG laser for laser ablation ICP-MS. J Anal At Spectrom 18:1224–1230

    CrossRef  Google Scholar 

  • Günther D, Hattendolf B (2005) Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. Trends Anal Chem 24:255–265

    CrossRef  Google Scholar 

  • Günther D, Frischknecht R, Heinrich C, Kahlert HJ (1997) Capabilities of an argon fluoride 193 nm excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological mateirals. J Anal At Spectrom 12:939–944

    CrossRef  Google Scholar 

  • Hare D, Austin C, Doble P, Arora M (2011) Elemental bio-imaging of trace elements in teeth using laser ablation-inductively coupled plasma-mass spectrometry. J Dent 39:397–403

    CrossRef  Google Scholar 

  • Hattendorf B, Latkoczy C, Günther D (2003) Laser ablation-ICPMS. Anal Chem 75:341A–347A

    CrossRef  Google Scholar 

  • Hattori K, Sakata S, Tanaka M, Orihashi Y, Hirata T (2017) U–Pb age determination for zircons using later ablation-ICP-mass spectrometry equipped with six multiple-ion counting detectors. J Anal Atom Spectrom 32:88–95

    CrossRef  Google Scholar 

  • Heilmann J, Boulyga SF, Heumann KG (2009) Development of an isotope dilution laser ablation ICP-MS method for multi-element determination in crude and fuel oil samples. J Anal At Spectrom 24:385–390

    CrossRef  Google Scholar 

  • Hirata T (2012) Advances in laser ablation-multi-collector inductively coupled plasma mass spectrometry, Chapter 4. In: Vanhaecke F, Degryse P (eds) Isotopic analysis: fundamentals and applications using ICP-MS. Wiley-VCH Verlag GmbH & Co. KGaA, Somerset, pp 93–112

    CrossRef  Google Scholar 

  • Hirata T, Kon Y (2008) Evaluation of the analytical capability of NIR femtosecond laser ablation–inductively coupled plasma mass spectrometry. Anal Sci 24:345–353

    CrossRef  Google Scholar 

  • Hirata T, Miyazaki Z (2007) High-speed camera imaging for laser ablation process: for further reliable elemental analysis using inductively coupled plasma-mass spectrometry. Anal Chem 79:147–152

    CrossRef  Google Scholar 

  • Hirata T, Nesbitt RW (1995) U–Pb isotope geochronology of zircon: evaluation of the laser probe-inductively coupled plasma mass spectrometry technique. Geochim Cosmochim Acta 59:2491–2500

    CrossRef  Google Scholar 

  • Holden P, Lanc P, Ireland TR, Harrison TM, Foster JJ, Bruce Z (2009) Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: the first 100,000 grains. Int J Mass Spectrom 286:53–63

    CrossRef  Google Scholar 

  • Horn I, Blanckenburg F (2007) Investigation on elemental and isotopic fractionation during 196 nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry. Spectrochim Acta 62B:410–422

    CrossRef  Google Scholar 

  • Horn I, Rudnick RL, McDonough WF (2000) Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U–Pb geochronology. Chem Geol 164:281–301

    CrossRef  Google Scholar 

  • Iizuka T, Hirata T (2004) Simultaneous determinations of U-Pb age and REE abundances for zircons using ArF excimer laser ablation-ICPMS. Geochem J 38:229–241

    CrossRef  Google Scholar 

  • Iizuka T, Hirata T (2005) Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chem Geol 220:121–137

    CrossRef  Google Scholar 

  • Iizuka T, Horie K, Komiya T, Maruyama S, Hirata T, Hidaka H, Windley BF (2006) 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: evidence for early continental crust. Geology 34:245–248

    CrossRef  Google Scholar 

  • Ikehata K, Notsu K, Hirata T (2008) In situ determination of Cu isotope ratios in copper-rich materials by NIR femtosecond LA-MC-ICP-MS. J Anal Atom Spectrom 23:1003–1008

    CrossRef  Google Scholar 

  • Ireland TR, Williams I (2003) Considerations in zircon geochronology by SIMS. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America, Washington, DC, 215–241 pp

    Google Scholar 

  • Iwano H, Orihashi Y, Hirata T, Ogasawara M, Danhara T, Horie K, Hasebe N, Sueoka S, Tamura A, Hayasaka Y, Katsube A, Ito H, Tani K, Kimura K-J, Chang Q, Kouchi Y, Haruta Y, Yamamoto K (2013) An inter-laboratory evaluation of OD-3 zircon for use as a secondary U–Pb dating standard. Island Arc 22:382–394

    CrossRef  Google Scholar 

  • Jackson SE, Günther D (2003) The nature and sources of laser-induced isotopic fractionation in laser ablation multicollector inductively coupled plasma mass spectrometry. J Anal At Spectrom 18:205–212

    CrossRef  Google Scholar 

  • Jackson S, Pearson N, Griffin W, Belousova E (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    CrossRef  Google Scholar 

  • Jackson B, Harper S, Smith L, Flinn J (2006) Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP-MS. Anal Bioanal Chem 384:951–957

    CrossRef  Google Scholar 

  • Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29:333–338. doi:10.1111/j.1751-908X.2005.tb00904.x

    CrossRef  Google Scholar 

  • Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B, Raczek I, Stracke A, Alard O, Bouman C, Becker S, Dücking M, Brätz H, Klemd R, de Bruin D, Canil D, Cornell D, de Hoog CJ, Dalpé C, Danyushevsky L, Eisenhauer A, Gao Y, Snow JE, Groschopf N, Günther D, Latkoczy C, Guillong M, Hauri EH, Höfer HE, Lahaye Y, Horz K, Jacob DE, Kasemann SA, Kent AJR, Ludwig T, Zack T, Mason PRD, Meixner A, Rosner M, Misawa K, Nash BP, Pfänder J, Premo WR, Sun WD, Tiepolo M, Vannucci R, Vennemann T, Wayne D, Woodhead JD (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7:1–44. doi:10.1029/2005GC001060

    CrossRef  Google Scholar 

  • Jochum KP, Stoll B, Herwig K, Willbold M (2007) Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd: YAG laser and matrix-matched calibration. J Anal At Spectrom 22:112–121

    CrossRef  Google Scholar 

  • Koch J, Bohlen A, Hergenrer R, Niemax K (2004) Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass. J Anal At Spectrom 19:267–272

    CrossRef  Google Scholar 

  • Koch J, Walle M, Pisonero J, Günther D (2006) Performance characteristics of ultra-violet femtosecond laser ablation inductively coupled plasma mass spectrometry at similar to 265 and similar to 200 nm. J Anal At Spectrom 21:932–940

    CrossRef  Google Scholar 

  • Konz I, Fernandez B, Fernandez ML, Pereiro R, Sanz-Medel A (2011) Absolute quantification of human serum transferrin by species-specific isotope dilution laser ablation ICP-MS. Anal Chem 83:5353–5360

    CrossRef  Google Scholar 

  • Kozlov B, Saint A, Skroce A (2003) Elemental fractionation in the formation of particulates, as observed by simultaneous isotopes measurement using laser ablation ICP-oa-TOFMS. J Anal At Spectrom 18:1069–1075

    CrossRef  Google Scholar 

  • Kuhn H, Guillong M, Günther D (2004) Size-related vaporisation and ionisation of laser-induced glass particles in the inductively coupled plasma. Anal Bioanal Chem 378:1069–1074

    CrossRef  Google Scholar 

  • Lobinski R, Moulin C, Ortega R (2006) Imaging and speciation of trace elements in biological environment. Biochimie 88:1591–1604

    CrossRef  Google Scholar 

  • Longerich H, Günther D, Jackson S (1996) Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Fresenius J Anal Chem 355:538–542

    Google Scholar 

  • Matsuyama S, Mimura H, Yumoto H, Sano Y, Yamamura K, Yabashi M, Nishino Y, Tamasaku K, Ishikawa T (2006) Development of scanning xray Fuorescence microscope with spatial resolution of 30nm using KirkpatrickBaez mirror optics. Rev Sci Instrum 77:103–102

    Google Scholar 

  • McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26:606–643

    CrossRef  Google Scholar 

  • Myers AT, Havens RG, Niles WW (1995) Glass reference standards for trace element analysis of geologic materials. Dev Appl Spectrosc 8:132–137pp

    Google Scholar 

  • Nishizawa M, Yamamoto H, Ueno Y, Tsuruoka S, Shibuya T, Sawaki Y, Yamamoto S, Kon Y, Kitajima K, Komiya T, Maruyama S, Hirata T (2010) Grain-scale iron isotopic distribution of pyrite from Precambrian shallow marine carbonate revealed by femtosecond laser ablation multi-collector ICP-MS technique: potential proxy for the redox state of ancient seawater. Geochim Cosmochim Acta 74:2760–2778

    CrossRef  Google Scholar 

  • Niu H, Houk RS (1996) Fundamental aspects of ion extraction in inductively coupled plasma mass spectrometry. Spectrochim Acta 51B:779–815

    CrossRef  Google Scholar 

  • O-bayashi H, Tanaka M, Hattori K, Sakata S, Hirata T (2017) In-situ 207Pb/206Pb isotope ratio measurement using dual-daly ion counting ICP-mass spectrometer. J Anal Atom Spectrom 32:686–691

    CrossRef  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. J Geostand Geoanal 21:115–144

    CrossRef  Google Scholar 

  • Poitrasson F, Mao X, Mao SS, Freydier R, Russo RE (2003) Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon. Anal Chem 75:6184–6190

    CrossRef  Google Scholar 

  • Rasmussen B, Fletcher IR, Bengtson S, McNaughton NJ (2004) SHRIMP U–Pb dating of diagenetic xenotime in the Stirling Range Formation, Western Australia: 1.8 billion year minimum age for the Stirling biota. Precambrian Res 133:329–337. doi:10.1016/j.precamres.2004.05.008

    CrossRef  Google Scholar 

  • Rino S, Komiya T, Windley BF, Katayama I, Motoki A, Hirata T (2004) Major episodic increases of continental crustal growth determined from zircon ages of river sands: implications for mantle overturns in the early Precambrian. Phys Earth Planet Inter 146:369–394

    CrossRef  Google Scholar 

  • Russo RE, Mao XL, Gonzalez J, Mao SS (2002) Femtosecond laser ablation. J Anal Atom Spectrom 17:1072–1075

    CrossRef  Google Scholar 

  • Russo RE, Mao X, Gonzalez JJ, Zorba V, Yoo J (2013) Laser ablation in analytical chemistry. Anal Chem 85:6162–6177

    CrossRef  Google Scholar 

  • Sakata S, Hirakawa S, Iwano H, Danhara T, Guillong M, Hirata T (2017) A new approach for constraining the magnitude of initial disequilibrium in Quaternary zircons by coupled uranium and thorium decay series dating. Quat Geochronol 38:1–12

    CrossRef  Google Scholar 

  • Schaltegger U, Schmitt K, Horstwood MSA (2015) U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities. Chem Geol 402:89–110

    CrossRef  Google Scholar 

  • Schmitt AK (2011) Uranium series accessory crystal dating of magmatic processes. Annu Rev Earth Planet Sci 39:321–349

    CrossRef  Google Scholar 

  • Simonetti A, Heaman LM, Hartlaub RP, Creaser RA, MacHattie TG, Böhm C (2005) U–Pb zircon dating by laser ablation-MC-ICP-MS using a new multiple ion counting Faraday collector array. J Anal Atom Spectrom 20:677–686

    CrossRef  Google Scholar 

  • Sims KWW, Blichert-Toft J, Kyle PR, Pichat S, Gauthier PJ, Blusztajn J, Kelly P, Ball L, Layne G (2008) A Sr, Nd, Hf, and Pb isotope perspective on the genesis and long-term evolution of alkaline magmas from Erebus Volcano, Antarctica. J Volcanol Geotherm Res 177:606–618

    CrossRef  Google Scholar 

  • Snow JE, Friedrich JM (2005) Multiple in counting ICPMS double spike method for precise U isotopic analysis at ultra-trace levels. Int J Mass Spectrom 242:211–215

    CrossRef  Google Scholar 

  • Thirlwall MF, Walder AJ (1995) In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry. Chem Geol 122:241–247

    CrossRef  Google Scholar 

  • Tiepolo M (2003) In situ Pb geochronology of zircon with laser ablation-inductively coupled plasma-sector field mass spectrometry. Chem Geol 199:159–177

    CrossRef  Google Scholar 

  • Walczyk T (2004) TIMS versus multicollector-ICP-MS: coexistence or struggle for survival? Anal Bioanal Chem 378:229–231

    CrossRef  Google Scholar 

  • Weiss Y, Griffin WL, Elhlou S, Navon O (2008) Comparison between LA-ICP-MS and EPMA analysis of trace elements in diamonds. Chem Geol 252:158–168

    CrossRef  Google Scholar 

  • Wieser ME, Schwieters JB (2005) The development of multiple collector mass spectrometry for isotope ratio measurements. Int J Mass Spec 242:97–115

    CrossRef  Google Scholar 

  • Woodhead JD (2002) A simple method for obtaining highly accurate, Pb isotope data by MC-ICPMS. J Anal At Spectrom 17:1381–1385

    CrossRef  Google Scholar 

  • Woodhead J, Hergt J, Meffre S, Large RR, Danyushevsky L, Gilbert S (2009) In situ Pb-isotope analysis of pyrite by laser ablation (multi-collector and quadrupole) ICPMS. Chem Geol 262:344–354

    CrossRef  Google Scholar 

  • Yokoyama TD, Suzuki T, Kon Y, Hirata T (2011) Determinations of REE abundance and U-Pb age of zircons using multispot laser ablation-ICP-mass spectrometry. Anal Chem 83:8892–8899

    CrossRef  Google Scholar 

  • YongSheng L, ZhaoChu H, Ming L, Shan G (2013) Applications of LA-ICP-MS in the elemental analyses of geological samples. Chin Sci Bull 58:3863–3878

    CrossRef  Google Scholar 

  • Yoshiya K, Sawaki Y, Hirata T, Maruyama S, Komiya T (2015a) In-situ iron isotope analyses of pyrites from 3.5 to 3.2 Ga sedimentary rocks of the Barberton Greenstone Belt, Kaapvaal craton. Chem Geol 401:126–139

    CrossRef  Google Scholar 

  • Yoshiya K, Sawaki Y, Shibuya T, Yamamoto S, Komiya T, Hirata T, Maruyama S (2015b) In-situ iron isotope analyses of pyrites from 3.5 to 3.2 Ga sedimentary rocks of the Barberton Greenstone Belt, Kaapvaal Craton. Chem Geol 403:58–73

    CrossRef  Google Scholar 

  • Zeng X, Mao XL, Greif R, Russo RE (2004) Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Appl Phys A. doi:10.1007/s00339-004-2963-9

  • Zoriy M, Becker JS, Dobrowolska J, Matusch A (2007) Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in elemental imaging of biological tissues and in proteomics. J Anal At Spectrom 22:736–744

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Hirata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Hirata, T. (2017). Laser Ablation – Inductively Coupled Plasma Mass Spectrometry. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_307-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_307-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth & Environm. ScienceReference Module Physical and Materials Science