Skip to main content

Heat-Producing Elements (HPEs)

  • Living reference work entry
  • First Online:

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

The heat-producing elements are thorium , uranium, and potassium , which are those elements having radioactive isotopes with abundances and activities that are sufficient to produce geologically significant amounts of radiogenic heat.

Radiogenic Heat Production

In the early solar system, the decay of 26Al, with a half-life of 0.74 Ma, supplied the heat to metamorphose the small planetesimals that accreted from the solar nebula and partially melt larger planetesimals and planetary embryos formed during the initial stages of assembling rocky planets. Another long-extinct radionuclide, 60Fe, with a half-life of 1.5 Ma, was once suggested as an additional heat source, but recent measurements on primitive meteorites indicate that its concentration in the early solar system was too low to matter (e.g., Tang and Dauphas, 2012). Today, only four radionuclides (40K, 232Th, 235U, and 238U) have high enough abundances in the solar system combined with sufficient rates of decay to...

This is a preview of subscription content, log in via an institution.

References

  • Andersen, M. B., Elliott, T., Freymuth, H., Sims, K. W., Niu, Y., and Kelley, K. A., 2015. The terrestrial uranium isotope cycle. Nature, 517, 356–359.

    Article  Google Scholar 

  • Bianchi, D., Sarmiento, J. L., Gnanadesikan, A., Key, R. M., Schlosser, P., and Newton, R., 2010. Low helium flux from the mantle inferred from simulations of oceanic helium isotope data. Earth and Planetary Science Letters, 297, 379–386.

    Article  Google Scholar 

  • Blichert-Toft, J., Zanda, B., Ebel, D. S., and Albarède, F., 2010. The solar system primordial lead. Earth and Planetary Science Letters, 300, 152–163.

    Article  Google Scholar 

  • Bunge, H. P., 2005. Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models. Physics of the Earth and Planetary Interiors, 153, 3–10.

    Article  Google Scholar 

  • Campbell, I. H., and O’Neill, H. S. C., 2012. Evidence against a chondritic Earth. Nature, 483, 553–558.

    Article  Google Scholar 

  • Davies, G. F., 1999. Dynamic Earth: Plates, plumes and mantle convection. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Davies, J. H., and Davies, D. R., 2010. Earth’s surface heat flux. Solid Earth, 1, 5–24.

    Article  Google Scholar 

  • Dye, S. T., 2012. Geoneutrinos and the radioactive power of the Earth. Reviews of Geophysics, 50, paper number 2012RG000400.

    Google Scholar 

  • Galer, S. J., and Goldstein, S. L., 1996. Influence of accretion on lead in the Earth. In Basu, A., and Hart, S. (eds.), Earth Processes: Reading the Isotopic Code. Washington, DC: American Geophysical Union. AGU Geophysical Monograph 95, pp. 75–98.

    Chapter  Google Scholar 

  • Galer, S. J. G., and O’Nions, R. K., 1985. Residence time of thorium, uranium and lead in the mantle with implications for mantle convection. Nature, 316, 778–782.

    Article  Google Scholar 

  • Gando, A., et al., 2013. Reactor on-off antineutrino measurement with Kam-LAND. Physical Review D, 88, 033001, doi:10.1103/PhysRevD.88.033001.

    Article  Google Scholar 

  • Holland, T. J. B., and Powell, R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333–383.

    Google Scholar 

  • Huang, Y., Chubakov, V., Mantovani, F., Rudnick, R. L., and McDonough, W. F., 2013. A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochemistry, Geophysics, Geosystems, 14, 2003–2029.

    Article  Google Scholar 

  • Jaupart, C., Labrosse, S., and Mareschal, J. C. 2007. Temperatures, heat and energy in the mantle of the earth. In G. Schubert (ed.), Treatise on Geophysics, vol. 7: Mantle Dynamics. Elsevier, Amsterdam, pp. 223–270.

    Google Scholar 

  • Jellinek, A. M., and Jackson, M. G., 2015. Connections between the bulk composition, geodynamics and habitability of Earth. Nature Geoscience, 8, 587–593.

    Article  Google Scholar 

  • Lay, T., Hernlund, J., and Buffett, B. A., 2008. Core–mantle boundary heat flow. Nature Geoscience, 1, 25–32.

    Article  Google Scholar 

  • Olson, P., Deguen, R., Rudolph, M. L., and Zhong, S., 2015. Core evolution driven by mantle global circulation. Physics of the Earth and Planetary Interiors, 243, 44–55.

    Article  Google Scholar 

  • O’Neill, H. S. C., 1991. The origin of the Moon and the early history of the Earth – a chemical model. Part 1: the Moon. Geochimica et Cosmochimica Acta, 55, 1135–1157.

    Article  Google Scholar 

  • O’Neill, H. S. C., and Palme, H., 2008. Collisional erosion and the non-chondritic composition of the terrestrial planets. Philosophical Transaction of Royal Society A, 366, 4205–4238.

    Article  Google Scholar 

  • O’Neill, H. S. C., and Jenner, F. E., 2012. The global pattern of trace-element distributions in ocean floor basalts. Nature, 491, 698–704.

    Article  Google Scholar 

  • O’Nions, R. K., and Oxburgh, E. R., 1983. Heat and helium in the earth. Nature, 306, 429–431.

    Article  Google Scholar 

  • Palme, H., and O’Neill, H. St.C. 2014. Cosmochemical estimates of mantle composition. In Carlson, R. W. (eds.), Treatise on Geochemistry, 2nd Edition, Vol. 3: The Mantle and Core. Elsevier, Oxford pp. 1–39.

    Google Scholar 

  • Peplowski, P. N., et al., 2012. Variations in the abundances of potassium and thorium on the surface of Mercury: results from the MESSENGER Gamma–Ray Spectrometer. Journal of Geophysical Research, Planets, 117, E00L04, doi:10.1029/2012JE004141.

    Google Scholar 

  • Renne, P. R., Mundil, R., Balco, G., Min, K., and Ludwig, K. R., 2010. Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta, 74, 5349–5367.

    Article  Google Scholar 

  • Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R., and Min, K., 2011. Response to the comment by WH Schwarz et al. on “Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by PR Renne et al. (2010). Geochimica et Cosmochimica Acta, 75, 5097–5100.

    Article  Google Scholar 

  • Schubert, G., Turcotte, D. L., and Olson, P., 2001. Mantle convection in the earth and planets. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Surkov, Y. A., Kirnozov, F. F., Glazov, V. N., Dunchenko, A. G., Tatsy, L. P., and Sobornov, O. P., 1987. Uranium, thorium, and potassium in the Venusian rocks at the landing sites of Vega 1 and 2. Journal of Geophysical Research, Solid Earth, 92(B4), E537–E540.

    Article  Google Scholar 

  • Tang, H., and Dauphas, N., 2012. Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth and Planetary Science Letters, 359, 248–263.

    Article  Google Scholar 

  • Wohlers, A., and Wood, B. J., 2015. A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd. Nature, 520(7547), 337–340.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh StC O’Neill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

O’Neill, H.S. (2016). Heat-Producing Elements (HPEs). In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_265-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_265-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics