Skip to main content

Zirconium

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 210 Accesses

FormalPara Element Data

Atomic symbol: Zr

Atomic number: 40

Atomic weight: 91.224

Isotopes and abundances: 90Zr, 51.45% 91Zr,

11.22%, 92Zr, 17.15%, 94Zr, 17.38%, 96Zr, 2.80%

1 Atm melting point: 1855 °C

1 Atm boiling point: 4371 °C

Common valences: 4+

Ionic radii: sixfold: 72 pm

Pauling electronegativity: 1.33

First ionization potential: 640 kJ/mol

Chondritic (CI) abundance: 3.63 ppm

Silicate Earth abundance: 10.3 ppm

Crustal abundance: 132 ppm

Seawater abundance: 9–300 pmol/kg

Core abundance: n/a

Properties

Zirconium is a transition metal of low toxicity with the atomic number of 41. Zirconium has five stable isotopes (90, 91, 92, 94, 96) with an atomic mass of 91.224(2) (CIAAW, 2015). The isotope 92Zr is the decay product of the now extinct 92Nb with a half-life of 34.7 Ma (e.g., Münker et al., 2000; Schönbächler et al., 2002; Iizuka et al., 2016). In some chondrites and CAIs , the neutron-rich isotope 96Zr is slightly enriched relative to other Zr isotopes, reflecting variable...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akram, W., Schönbächler, M., Bisterzo, S., and Gallino, M., 2015. Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the solar system. Geochimica et Cosmochimica Acta, 165, 484–500.

    Article  Google Scholar 

  • Barth, M. G., McDonough, W. F., and Rudnick, R. L., 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology, 165, 197–213.

    Article  Google Scholar 

  • Bau, M., 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123, 323–333.

    Article  Google Scholar 

  • Bruland, K. W., Middag, R., and Lohan, M. C., 2014. Controls of trace metals in seawater. In Mottl, M. J., and Elderfield, H. (eds.), The Oceans and Marine Geochemistry. Amsterdam NL: Elsevier. Treatise on geochemistry, Vol. 8, pp. 19–51.

    Google Scholar 

  • CIAAW (2015). Commission on Isotopic Abundances and Atomic Weights. http://ciaaw.org/atomic-weights.htm

  • David, K., Schiano, P., and Allègre, C. J., 2000. Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes. Earth and Planetary Science Letters, 178, 285–301.

    Article  Google Scholar 

  • Firdaus, M. L., Minami, T., Norisuye, K., and Sohrin, Y., 2011. Strong elemental fractionation of Zr-Hf and Nb-Ta across the Pacific Ocean. Nature Geoscience, 4, 227–230.

    Article  Google Scholar 

  • Foley, S., Tiepolo, M., and Vannucci, R., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417, 837–840.

    Article  Google Scholar 

  • Godfrey, L. V., White, W. M., and Salters, V. J. M., 1996. Dissolved zirconium and hafnium distributions across a shelf break in the northeastern Atlantic Ocean. Geochimica et Cosmochimica Acta, 60(21), 3995–4006.

    Article  Google Scholar 

  • Hermann, J., and Rubatto, D., 2009. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chemical Geology, 265, 512–526.

    Article  Google Scholar 

  • Iizuka, T., Lai, Y. J., Akram, W., Amelin, Y., and Schönbächler, M., 2016. The initial abundance and distribution of 92Nb in the Solar System. Earth and Planetary Science Letters, 439, 172–181.

    Article  Google Scholar 

  • Klemme, S., Blundy, J. D., and Wood, B. J., 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta, 66(17), 3109–3123.

    Article  Google Scholar 

  • Lodders, K., 2003. Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 1220–1247.

    Article  Google Scholar 

  • McDade, P., Blundy, J. D., and Wood, B. J., 2003. Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa. Physics of the Earth and Planetary Interiors, 139, 129–147.

    Article  Google Scholar 

  • Münker, C., Weyer, S., Mezger, K., Rehkämper, M., Wombacher, F., and Bischoff, A., 2000. 92Nb-92Zr and the early differentiation history of planetary bodies. Science, 289, 1538–1542.

    Article  Google Scholar 

  • Münker, C., Pfänder, J. A., Weyer, S., Büchl, A., Kleine, T., and Mezger, K., 2003. Evolution of planetary cores and the Earth – moon system from Nb/Ta systematics. Science, 301, 84–87.

    Article  Google Scholar 

  • Palme, H., and O’Neill, H. St. C, 2014. Cosmochemical estimates of mantle composition. In Carlson, R. W. (ed.), The Mantle and Core. Amsterdam NL: Elsevier. Treatise on Geochemistry, Vol. 3, pp. 1–39.

    Google Scholar 

  • Pearce, J. W., and Peate, D. W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23, 251–285.

    Article  Google Scholar 

  • Pfänder, J. A., Münker, C., Stracke, A., and Mezger, K., 2007. Nb/Ta and Zr/Hf in ocean island basalts - implications for crust-mantle differentiation and the fate of Niobium. Earth and Planetary Science Letters, 254(1-2), 158–172.

    Article  Google Scholar 

  • Pfänder, J. A., Jung, S., Münker, C., Stracke, A., and Mezger, K., 2012. A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget – evidence from continental basalts from Central Germany. Geochimica et Cosmochimica Acta, 77, 232–251.

    Article  Google Scholar 

  • Rudnick, R. L. and Gao, S., 2014. Composition of the continental crust. The Crust. Amsterdam NL: Elsevier. Treatise on Geochemistry, Vol. 4, pp. 1–51.

    Google Scholar 

  • Schmidt, K., Bau, M., Hein, J. R., and Koschinsky, A., 2014. Fractionation of the geochemical twins Zr–Hf and Nb–Ta during scavenging from seawater by hydrogenetic ferromanganese crusts. Geochimica et Cosmochimica Acta, 140, 468–487.

    Google Scholar 

  • Schönbächler, M., Rehkämper, M., Halliday, A. N., Lee, D. C., Bourot-Denise, M., Zanda, B., Hattendorf, B., and Günther, D., 2002. Niobium-zirconium chronometry and early solar sytem development. Science, 295, 1705–1708.

    Article  Google Scholar 

  • Shannon, R. D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.

    Article  Google Scholar 

  • USGS, (2014). http://minerals.usgs.gov/minerals/pubs/commodity/zirconium/mcs-2014-zirco.pdf

  • Zack, T., Kronz, A., Foley, S. F., and Rivers, T., 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184, 97–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Münker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Münker, C. (2016). Zirconium. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_264-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_264-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics