Skip to main content

Iron

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 153 Accesses

FormalPara Element Data

Atomic Symbol: Fe

Atomic Number: 26

Atomic Weight: 55.847 g/mol

Isotopes and Abundances: 54Fe 5.845%, 56Fe 91.754%, 57Fe 2.119%, 58Fe 0.282%

1 bar Melting Point: 1,538 °C

1 bar Boiling Point: 2,862 °C

Common Valences: 0, +2, +3

Ionic Radii: Fe+2 78 pm (6-fold, high-spin); Fe+3 64.5 pm (6-fold, high-spin)

Pauling Electronegativity: 1.83

First Ionization Potential: 762.5 kJ/mol

Chondritic (CI) Abundance: 18.28 wt. %

Silicate Earth Abundance: 6.26 wt. %

Crustal Abundance: 5.04 wt. %

Seawater Abundance: 30 pg/g

Core Abundance: 78–88 wt. %

Properties

Iron is one of a small group of metals that has been known to humans since antiquity. An entire period of human history, the Iron Age, followed the Bronze Age, as iron alloys replaced Cu alloys for tools and weapons. Since the Industrial Revolution, the production of steel makes iron one of the 2–3 most highly used elements.

Iron is one of the most abundant elements in the terrestrial planets, constituting ~30 wt. % of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Badro J, Fiquet G, Guyot F, Rueff J-P, Struzhkin VV, Vanko G, Monaco G (2003) Iron partitioning in Earth’s mantle: towards a deep lower mantle discontinuity. Science 300:789–791

    Article  Google Scholar 

  • Beck P, Pommerol A, Zanda B, Remusat L, Lorand JP, Göpel C, Hewins R, Pont S, Lewin E, Quirico E, Schmitt B, Montes-Hernandez G, Garenne A, Bonal L, Proux O, Hazemann JL, Chevrier VF (2015) A Noachian source region for the “black beauty” meteorite, and a source lithology for Mars surface hydrated dust? Earth Planet Sci Lett 427:104–111

    Article  Google Scholar 

  • Bezos A, Humler E. (2005) The Fe+3/SFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69:711–725

    Article  Google Scholar 

  • Bird JM, Goodrich CA, Weathers MS (1981) Petrogenesis of Uivfaq iron, Disko Island, Greenland. J Geophys Res B86:11787–11805

    Article  Google Scholar 

  • Brearley AJ, Jones RH (1998) Chondritic meteorites. Rev Mineral 36:398 pp

    Google Scholar 

  • Bryndzia LT, Wood BJ (1990) Oxygen thermobarometry of abyssal spinel peridotites: The redox state and C-O-H volatile composition of the Earth’s sub-oceanic upper mantle. Am J Sci 290:1093–1116

    Article  Google Scholar 

  • Buchwald VF (1975) Handbook of iron meteorites. University of California Press, Berkeley, 1418 pp

    Google Scholar 

  • Canfield DE, Poulton SW, Knoll AH, Narbonne GM, Ross G, Goldberg T, Strauss H (2008) Ferruginous conditions dominated later Neoproterozoic deep-water conditions. Science 321:949–952

    Article  Google Scholar 

  • Clayton DD (2003) Handbook of isotopes in the cosmos: hydrogen to gallium. Cambridge University Press, Cambridge, UK, 314 pp

    Book  Google Scholar 

  • Comelli D, D’Orazio M, Folco L, El-Halwagy M, Frizzi T, Alberti R, Capogrosso V, Elnaggar A, Hassan H, Nevin A, Porcelli F, Rashed MG, Valenti G (2016) The meteoritic origin of Tutankhamun’s iron dagger blade. Meteorit Planet Sci 51:1301–1309

    Article  Google Scholar 

  • Cottrell E, Kelley KA (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett 305:270–282

    Article  Google Scholar 

  • Cottrell E, Kelley KA (2013) Redox heterogeneity as a function of mantle source. Science 340:1314–1317

    Article  Google Scholar 

  • Davis FA, Humayun M, Hirschmann MM, Cooper RS (2013) Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochim Cosmochim Acta 104:232–260

    Article  Google Scholar 

  • Dupré B, Viers J, Dandurand J-L, Polve M, Benezeth P, Vervier P, Braun J-J (1999) Major and trace elements associated with colloids in organic-rich river waters: ultrafiltration of natural and spiked solutions. Chem Geol 160:63–80

    Article  Google Scholar 

  • Fischer RA, Campbell AJ, Reaman DM, Miller NA, Heinz DL, Dera P, Prakapenka VB (2013) Phase relations in the Fe-FeSi system at high pressures and temperatures. Earth Planet Sci Lett 373:54–64

    Article  Google Scholar 

  • Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420

    Article  Google Scholar 

  • Gattacceca J, Rochette P, Scorzelli RB, Munayco P, Agee C, Quesnel Y, Cournède C, Geissman J (2014) Martian meteorites and Martian magnetic anomalies: a new perspective from NWA 7034. Geophys Res Lett 41:4859–4864

    Article  Google Scholar 

  • Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon Press, Oxford, 1542 pp

    Google Scholar 

  • Grossman L, Beckett JR, Fedkin AV, Simon SB, Ciesla FJ (2008) Redox conditions in the solar nebula: observational, experimental, and theoretical constraints. Rev Mineral Geochem 68:93–140

    Article  Google Scholar 

  • Huang S, Humayun M, Frey F (2007) Iron/manganese ratio and manganese content in shield lavas from Ko’olau volcano, Hawaii. Geochim Cosmochim Acta 71:4557–4569

    Article  Google Scholar 

  • Humayun M, Qin LP, Norman MD (2004) Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306:91–94

    Article  Google Scholar 

  • Johnson KS, Gordon RM, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57:137–161

    Article  Google Scholar 

  • Labrosse S, Poirier JP, Le Mouël JL (2001) The age of the inner core. Earth Planet Sci Lett 190:111–123

    Article  Google Scholar 

  • Lin J-F, Speziale S, Mao Z, Marquardt H (2013) Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev Geophys 51:244–275

    Article  Google Scholar 

  • Ma Y, Somayazulu M, Shen G, Mao H-K, Shu J, Hemley RJ (2004) In situ X-ray diffraction studies of iron to Earth-core conditions. Earth Planet Sci Lett 143-144:455–467

    Article  Google Scholar 

  • McCollom TM, Klein F, Robbins M, Moskovitz B, Berquó TS, Jöns N, Bach W, Templeton A (2016) Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. Geochim Cosmochim Acta 181:175–200

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Mittlefehldt DW, McCoy TJ, Goodrich CA, Kracher A (1998) Non-chondritic meteorites from asteroidal bodies. Rev Mineral 36:195 pp

    Google Scholar 

  • Morris RV, Klingelhöfer G, Schröder C, Fleisher I, Ming DW, Yen AS, Gellert R, Arvidson RE, Rodionov DS, Crumpler LS, Clark BC, Cohen BA, McCoy TJ, Mittlefehldt DW, Schmidt ME, de Souza PA, Squyres SW (2008) Iron mineralogy and aqueous alteration from Husband Hill through home plate at Gusev crater, Mars: results from the Mössbauer instrument on the Spirit Mars exploration rover. J Geophys Res E113:E12S42. doi:10.1029/2008JE003201

    Google Scholar 

  • Poirier J-P (1994) Light elements in the Earth’s outer core: a critical review. Phys Earth Planet In 85:319–337

    Article  Google Scholar 

  • Raiswell R, Canfield DE (2012) The iron biogeochemical cycle past and present. Geochem Perspect 1:220 pp

    Google Scholar 

  • Righter K, Drake MJ, Scott E (2006) Compositional relationships between meteorites and terrestrial planets. In: Lauretta DS, McSween HY (eds) Meteorites and the early solar system. University of Arizona Press, Tucson, pp 803–828

    Google Scholar 

  • Rubie DC, Gessmann CK, Frost DJ (2004) Partitioning of oxygen during core formation on the Earth and Mars. Nature 429:58–61

    Article  Google Scholar 

  • Ryabov VV, Lapkovsky AA (2010) Native iron (-platinum) ores from the Siberian platform trap intrusions. Aust J Earth Sci 57:707–736

    Article  Google Scholar 

  • Sahijpal S, Soni P, Gupta G (2007) Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources. Meteorit Planet Sci 42:1529–1548

    Article  Google Scholar 

  • Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O (2004) Iron-source preference of Staphylococcus aureus infections. Science 305:1626–1628

    Article  Google Scholar 

  • Squyres SW, Grotzinger JP, Arvidson RE, Bell JF, Calvin W, Christensen PR, Clark BC, Crisp JA, Farrand WH, Herkenhoff KE, Johnson JR, Klingelhöfer G, Knoll AH, McLennan SM, McSween HY, Morris RV, Rice JW, Rieder R, Soderblom LA (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306:1709–1714

    Article  Google Scholar 

  • Trampert J, Deschamps F, Resovsky J, Yuen D (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306:853–856

    Article  Google Scholar 

  • Tylecote RF (1992) A history of metallurgy, 2nd edn. The Institute of Materials, Maney, 205 pp

    Google Scholar 

  • Wallner A, Feige J, Kinoshita N, Paul M, Fifield LK, Golser R, Honda M, Linnemann U, Matsuzaki H, Merchel S, Rugel G, Tims SG, Steier P, Yamagata T, Winkler SR (2016) Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe. Nature 532:69–72

    Article  Google Scholar 

  • Weider SZ, Nittler LR, Starr RD, McCoy TJ, Stockstill-Cahill KR, Byrne PK, Devei BW, Head JW, Solomon SC (2012) Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-ray spectrometer. J Geophys Res E117:E00L05. doi:10.1029/2012JE004153

    Google Scholar 

  • Weiss BP, Kim SS, Kirschvink JL, Kopp RE, Sankaran M, Kobayashi A, Komeili A (2004) Magnetic tests for magnetosome chains in Martian meteorite ALH 84001. Proc Natl Acad Sci 101:8281–8284

    Article  Google Scholar 

  • Wozniak AS, Shelley RU, McElhenie SD, Landing WM, Hatcher PG (2015) Aerosol water soluble organic matter characteristics over the North Atlantic Ocean: implications for iron-binding ligands and iron solubility. Mar Chem 173:162–172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munir Humayun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Humayun, M. (2017). Iron. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_247-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_247-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics