Skip to main content

Partial Melting

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Synonyms

Fusion; Magma genesis

Definition

Partial meltingis the transformation of some fraction of the mass of a solid rock into a liquid as a result of decompression, heat input, or addition of a flux. The resulting liquid is called magma and becomes lava if it erupts from a volcano. The understanding that partial, rather than complete, melting is the norm in natural systems is essential to appreciating the geochemical importance of melting in the Earth and planets. During partial melting, the liquid differs from the source rock and from coexisting residual minerals in composition and in physical properties such as density and viscosity. The low viscosity, low density (usually), and interconnected texture of the liquid during partial melting allow the melt to migrate from the source and thereby trigger physical phenomena like volcanism as well as chemical segregation...

Keywords

  • Source Rock
  • Partial Melting
  • Subduction Zone
  • Oceanic Crust
  • Mantle Wedge

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2

References

  • Annen, C., Blundy, J., and Sparks, R., 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3), 505–539.

    CrossRef  Google Scholar 

  • Asimow, P. D., Hirschmann, M. M., and Stolper, E. M., 1997. An analysis of variations in isentropic melt productivity. Philosophical Transactions of the Royal Society of London. Series A, 355, 255–281.

    CrossRef  Google Scholar 

  • Asimow, P. D., Dixon, J. E., and Langmuir, C. H., 2004. A hydrous melting and fractionation model for mid-ocean ridge basalts: application to the Mid-Atlantic Ridge near the Azores. Geochemistry, Geophysics, Geosystems, 5(1), Q01E16, doi:10.1029/2003GC000568.

    CrossRef  Google Scholar 

  • Bonin, B., 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78(1), 1–24.

    CrossRef  Google Scholar 

  • Clark, C., Fitzsimons, I. C., Healy, D., and Harley, S. L., 2011. How does the continental crust get really hot? Elements, 7(4), 235–240.

    CrossRef  Google Scholar 

  • Drummond, M. S., Defant, M. J., and Kepezhinskas, P. K., 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of Edinburgh-Earth Sciences, 87, 205–215.

    CrossRef  Google Scholar 

  • Ganguly, J., 2005. Adiabatic decompression and melting of mantle rocks: An irreversible thermodynamic analysis. Geophysical Research Letters, 32(6).

    Google Scholar 

  • Grove, T. L., Chatterjee, N., Parman, S. W., and Medard, E., 2006. The influence of H2O on mantle wedge melting. Earth and Planetary Science Letters, 249(1-2), 74–89, doi:10.1016/J.Epsl.2006.06.043.

    CrossRef  Google Scholar 

  • Grove, T. L., Till, C. B., Lev, E., Chatterjee, N., and Medard, E., 2009. Kinematic variables and water transport control the formation and location of arc volcanoes. Nature, 459(7247), 694–697, doi:10.1038/Nature08044.

    CrossRef  Google Scholar 

  • Hacker, B. R., Abers, G. A., and Peacock, S. M., 2003. Subduction factory – 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research Solid Earth, 108(B1), 2029, doi:10.1029/2001JB001127.

    Google Scholar 

  • Herzberg, C., Asimow, P. D., Arndt, N., Niu, Y. L., Lesher, C. M., Fitton, J. G., Cheadle, M. J., and Saunders, A. D., 2007. Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems, 8(2), Q02006, doi:10.1029/2006gc001390.

    CrossRef  Google Scholar 

  • Huang, H.-H., Lin, F.-C., Schmandt, B., Farrell, J., Smith, R. B., and Tsai, V. C., 2015. The Yellowstone magmatic system from the mantle plume to the upper crust. Science, 348(6236), 773–776.

    CrossRef  Google Scholar 

  • Kogiso, T., Omori, S., and Maruyama, S., 2009. Magma genesis beneath Northeast Japan arc: a new perspective on subduction zone magmatism. Gondwana Research, 16(3-4), 446–457, doi:10.1016/J.Gr.2009.05.006.

    CrossRef  Google Scholar 

  • Langmuir, C. H., Klein, E. M., and Plank, T., 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In Phipps Morgan, J., Blackman, D. K., and Sinton, J. M. (eds). Geoph Monog Series. Vol. 71, pp. 183–280, Washington, DC: American Geophysical Union.

    Google Scholar 

  • Maclennan, J., McKenzie, D., and Gronvold, K., 2001. Plume-driven upwelling under central Iceland. Earth and Planetary Science Letters, 194(1-2), 67–82.

    CrossRef  Google Scholar 

  • McKenzie, D., and Bickle, M. J., 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29, 625–679.

    CrossRef  Google Scholar 

  • Pertermann, M., and Hirschmann, M. M., 2003. Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2-3 GPa. Journal of Petrology, 44(12), 2173–2201, doi:10.1093/Petrology/Egg074.

    CrossRef  Google Scholar 

  • Simon, J. I., Weis, D., DePaolo, D. J., Renne, P. R., Mundil, R., and Schmitt, A. K., 2014. Assimilation of preexisting Pleistocene intrusions at Long Valley by periodic magma recharge accelerates rhyolite generation: rethinking the remelting model. Contributions to Mineralogy and Petrology, 167(1), 1–34.

    CrossRef  Google Scholar 

  • Turner, S. J., and Langmuir, C. H., 2015. What processes control the chemical compositions of arc front stratovolcanoes? Geochemistry, Geophysics, Geosystems, 16(6), 1865–1893.

    CrossRef  Google Scholar 

  • Wotzlaw, J.-F., Schaltegger, U., Frick, D. A., Dungan, M. A., Gerdes, A., and Günther, D., 2013. Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. Geology, 41(8), 867–870.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Asimow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Asimow, P.D. (2016). Partial Melting. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_218-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_218-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth & Environm. ScienceReference Module Physical and Materials Science