Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White

Earth’s Atmosphere

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_210-1


The Earth’s atmosphere is the outer layer of our planet. This layer contains gases, commonly referred to as air.


The atmosphere is retained by the Earth’s gravity, although some of it is lost to outer space through thermal escape, known as Jeans escape. By volume, dry air contains 78.08% N2, 20.94% O2, 0.933% Ar, and 409 ppmv CO2 (CO2 data from the Mauna Loa Observatory, April 2017 at https://www.esrl.noaa.gov/gmd/ccgg/trends/monthly.html). The noble gases He, Ne, Kr, and Xe, together with CH4 and H2O (as water vapor), occur in trace concentrations (see Table 1). The total mass of the atmosphere is approximately 5.15 × 1018 kg, mainly concentrated in the first layer, called the troposphere, which extends from the topographic surface of the planet to 12 km above it.
Table 1

Twenty-first century elemental composition of dry air by volume (Data modified after Gatley et al. 2008)

Constituent (chemical symbol)

Volume %

Nitrogen (N2)


Oxygen (O2)



This is a preview of subscription content, log in to check access.


  1. Albarède F, Ballhaus C, Blichert-Toft J, Lee C-T, Marty B, Moynier F, Yin Q-Z (2013) Asteroidal impacts and the origin of terrestrial and lunar volatiles. Icarus 222:44–52CrossRefGoogle Scholar
  2. Altwegg K et al (2015) 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347Google Scholar
  3. Aristotle, Lee HDP (1952) Meteorologica. Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  4. Atreya SK et al (2013) Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on curiosity and implications for atmospheric loss. Geophys Res Lett 40:5605–5609CrossRefGoogle Scholar
  5. Avice G, Marty B (2014) The iodine–plutonium–xenon age of the moon–earth system revisited. Phil Trans R Soc A 372:20130260CrossRefGoogle Scholar
  6. Ballentine CJ, Holland G (2008) What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere. Philos Transact A Math Phys Eng Sci 366:4183–4203CrossRefGoogle Scholar
  7. Benkert J-P, Baur H, Signer P, Wieler R (1993) He, ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes. J Geophys Res Planets 98:13147–13162CrossRefGoogle Scholar
  8. Bernatowicz TJ, Podosek FA, Honda M, Kramer FE (1984) The atmospheric inventory of xenon and noble gases in shales: the plastic bag experiment. J Geophys Res Solid Earth 89:4597–4611CrossRefGoogle Scholar
  9. Butler WA, Jeffery PM, Reynolds JH, Wasserburg GJ (1963) Isotopic variations in terrestrial xenon. J Geophys Res 68:3283–3291CrossRefGoogle Scholar
  10. Canup RM, Asphaug E (2001) Origin of the moon in a giant impact near the end of the Earth’s formation. Nature 412:708–712CrossRefGoogle Scholar
  11. Chou CL (1978) Fractionation of Siderophile elements in the Earth’s upper mantle. Proceedings of 9th lunar and planetary Science Conference, vol 1, pp 219–230Google Scholar
  12. Clarke WB, Beg MA, Craig H (1969) Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet Sci Lett 6:213–220CrossRefGoogle Scholar
  13. Craig H, Clarke WB, Beg MA (1975) Excess 3He in deep water on the East Pacific rise. Earth Planet Sci Lett 26:125–132CrossRefGoogle Scholar
  14. Dauphas N (2003) The dual origin of the terrestrial atmosphere. Icarus 165:326–339CrossRefGoogle Scholar
  15. Dauphas N, Marty B (2002) Inference on the nature and the mass of Earth’s late veneer from noble metals and gases. J Geophys Res Planets 107:5129. doi:10.1029/2001JE001617CrossRefGoogle Scholar
  16. Dauphas N, Morbidelli A (2014) 6.1 - Geochemical and Planetary Dynamical Views on the Origin of Earth’s Atmosphere and Oceans. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, 2nd edn. Elsevier, Oxford, pp 1–35Google Scholar
  17. Dewaele A, Worth N, Pickard CJ, Needs RJ, Pascarelli S, Mathon O, Mezouar M, Irifune T (2016) Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure. Nat Chem 8:784–790CrossRefGoogle Scholar
  18. Drake M, Righter K (2002) Determining the composition of the Earth. Nature 416:39–44CrossRefGoogle Scholar
  19. Engrand C, DeLoule E, Robert F, Maurette M, Kurat G (1999) Extraterrestrial water in micrometeorites and cosmic spherules from Antarctica: an ion microprobe study. Meteorit Planet Sci 34:773–786CrossRefGoogle Scholar
  20. Gatley DP, Herrmann S, Kretzschmar H-J (2008) A twenty-first century molar mass for dry air. HVAC&R Research 14:655–662CrossRefGoogle Scholar
  21. Geiss J, Gloeckler G, Von Steiger R (1995) Origin of the solar wind from composition data. Space Sci Rev 72:49–60CrossRefGoogle Scholar
  22. Hamano Y, Ozima M (1978) Earth-atmosphere evolution model based on Ar isotopic data. In: Alexander Jr EC, Ozima M (eds.), Terrestrial rare gases. Japan Societies Press, Hakone, Kanagawa, Japan, pp 155–171Google Scholar
  23. Hartogh P, Lis DC, Bockelee-Morvan D, de Val-Borro M, Biver N, Kuppers M, Emprechtinger M, Bergin EA, Crovisier J, Rengel M, Moreno R, Szutowicz S, Blake GA (2011) Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478:218–220CrossRefGoogle Scholar
  24. Hawkesworth CJ, Kemp AIS (2006) The differentiation and rates of generation of the continental crust. Chem Geol 226:134–143CrossRefGoogle Scholar
  25. Heber VS, Wiens RC, Reisenfeld DB, Allton JH, Baur H, Burnett DS, Olinger CT, Wiechert U, Wieler R (2007) The genesis solar wind concentrator target: mass fractionation characterised by neon isotopes. In: von Steiger R, Gloeckler G, Mason GM (eds) The composition of matter. Springer, New York, pp 309–316CrossRefGoogle Scholar
  26. Javoy M (1997) The major volatile elements of the earth: their origin, behavior, and fate. Geophys Res Lett 24:177–180CrossRefGoogle Scholar
  27. Kircher A (1678) Athanasii Kircheri Mundus Subterraneus Athanasii Kircheri Mundus Subterraneus. Apud Joannem Janssonium à Waesberge & filios, AmsterdamGoogle Scholar
  28. Kleine T, Munker C, Mezger K, Palme H (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418:952–955CrossRefGoogle Scholar
  29. Kunz J, Staudacher T, Allègre CJ (1998) Plutonium-fission xenon found in Earth’s mantle. Science 280:877–880CrossRefGoogle Scholar
  30. Kurat G, Koeberl C, Presper T, Brandstätter F, Maurette M (1994) Petrology and geochemistry of Antarctic micrometeorites. Geochim Cosmochim Acta 58:3879–3904CrossRefGoogle Scholar
  31. Lan TF, Sano Y, Yang TF, Takahata N, Shirai K, Pinti DL (2010) Evaluating earth degassing in subduction zones by measuring helium fluxes from the ocean floor. Earth Planet Sci Lett 298:317–322CrossRefGoogle Scholar
  32. Lécuyer C, Gillet P, Robert F (1998) The hydrogen isotope composition of seawater and the global water cycle. Chem Geol 145:249–261CrossRefGoogle Scholar
  33. Lee KKM, Steinle-Neumann G (2006) High-pressure alloying of iron and xenon: “Missing” Xe in the Earth’s core? Journal of Geophysical Research: Solid Earth 111:B02202Google Scholar
  34. Mamyrin BA, Tolstikhin IN, Anufriev GS, Kamenskyi IL (1969) Anomalous isotopic composition of helium in volcanic gases. Dokl Akad Nauk SSSR 1197. (in Russian)Google Scholar
  35. Marty B (1989) Neon and xenon isotopes in MORB – implications for the earth-atmosphere evolution. Earth Planet Sci Lett 94:45–56CrossRefGoogle Scholar
  36. Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on earth. Earth Planet Sci Lett 313–314:56–66CrossRefGoogle Scholar
  37. Marty B, Meibom A (2007) Noble gas signature of the late heavy bombardment in the Earth’s atmosphere. eEarth 2:43–49CrossRefGoogle Scholar
  38. Marty B, Avice G, Sano Y, Altwegg K, Balsiger H, Hässig M, Morbidelli A, Mousis O, Rubin M (2016) Origins of volatile elements (H, C, N, noble gases) on earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet Sci Lett 441:91–102CrossRefGoogle Scholar
  39. Matsumoto T, Honda M, McDougall I, Yatsevich I, O’Reilly SY (1997) Plume-like neon in a metasomatic apatite from the Australian lithospheric mantle. Nature 388:162–164CrossRefGoogle Scholar
  40. Morbidelli A, Chambers J, Lunine JI, Petit JM, Robert F, Valsecchi GB, Cyr KE (2000) Source regions and timescales for the delivery of water to the earth. Meteorit Planet Sci 35:1309–1320CrossRefGoogle Scholar
  41. Moreira M, Kunz J, Allègre C (1998) Rare gas systematics in popping rocks: isotopic and elemental compositions in the upper mantle. Science 279:1178–1180CrossRefGoogle Scholar
  42. Morgan JW, Wandless GA, Petrie RK, Irving AJ (1981) Composition of the earth’s upper mantle – I. Siderophile trace elements in ultramafic nodules. Tectonophysics 75:47–67CrossRefGoogle Scholar
  43. Mukhopadhyay S (2012) Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486:101–104CrossRefGoogle Scholar
  44. Nimmo F, Kleine T (2015) Early differentiation and core formation: processes and timescales. In: Badro J, Walter M (eds) The early earth: accretion and differentiation, Geophysical Monograph series, vol 212. American Geophysical Union, Washington, DC, pp 83–102CrossRefGoogle Scholar
  45. Owen T, Bar-Nun A (1995) Comets, impacts, and atmospheres. Icarus 116:215–226CrossRefGoogle Scholar
  46. Ozima M, Podosek FA (1983) Noble gas geochemistry. Cambridge University Press, CambridgeGoogle Scholar
  47. Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221–224CrossRefGoogle Scholar
  48. Pinti DL (2005) The origin and evolution of the oceans. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology. Springer, Berlin, pp 83–112CrossRefGoogle Scholar
  49. Pujol M, Marty B, Burgess R (2011) Chondritic-like xenon trapped in Archean rocks: a possible signature of the ancient atmosphere. Earth Planet Sci Lett 308:298–306CrossRefGoogle Scholar
  50. Raquin A, Moreira MA, Guillon F (2008) He, ne and Ar systematics in single vesicles: mantle isotopic ratios and origin of the air component in basaltic glasses. Earth Planet Sci Lett 274:142–150CrossRefGoogle Scholar
  51. Raymond SN, Quinn T, Lunine JI (2006) High-resolution simulations of the final assembly of Earth-like planets I: terrestrial accretion and dynamics. Icarus 183:265–282CrossRefGoogle Scholar
  52. Robert F (2001a) The origin of water on Earth. Science 293:1056–1058CrossRefGoogle Scholar
  53. Robert F (2001b) L’origine de l’eau dans le Système Solaire telle que est enregistrée par son rapport isotopique D/H. In: Gargaud M, Despois D, Parisot J-P (ed) L’environnement de la Terre primitive. Presses Universitaires de Bordeaux, Bordeaux, France, pp 79–89Google Scholar
  54. Rubey WW (1951) Geologic history of seawater: an attempt to state the problem. GSA Bull 62:1111–1147CrossRefGoogle Scholar
  55. Sanloup C, Schmidt BC, Perez EMC, Jambon A, Gregoryanz E, Mezouar M (2005) Retention of xenon in quartz and Earth’s missing xenon. Science 310:1174–1177CrossRefGoogle Scholar
  56. Sano Y, Marty B, Burnard P (2013) Noble gases in the atmosphere. In: Burnard P (ed) The Noble gases as geochemical tracers. Springer, Berlin, pp 17–31CrossRefGoogle Scholar
  57. Sarda P, Staudacher T, Allègre CJ (1985) 40Ar/36Ar in MORB glasses: constraints on atmosphere and mantle evolution. Earth Planet Sci Lett 72:357–375CrossRefGoogle Scholar
  58. Sarda P, Staudacher T, Allegre CJ (1988) Neon isotopes in submarine basalts. Earth Planet Sci Lett 91:73–88CrossRefGoogle Scholar
  59. Sleep NH, Zahnle K, Neuhoff PS (2001) Initiation of clement surface conditions on the earliest Earth. Proc Nat Acad Sci USA 98:3666–3672CrossRefGoogle Scholar
  60. Stuart FM, Lass-Evans S, Godfrey Fitton J, Ellam RM (2003) High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424:57–59CrossRefGoogle Scholar
  61. Turner G (1989) The outgassing history of the Earth’s atmosphere. J Geol Soc Lond 146:147–154CrossRefGoogle Scholar
  62. Wang Z, Becker H (2013) Ratios of S, se and Te in the silicate earth require a volatile-rich late veneer. Nature 499:328–331CrossRefGoogle Scholar
  63. Wanke H, Gold T (1981) Constitution of terrestrial planets [and discussion]. Philos Trans R Soc A Math Phys Eng Sci 303:287–302CrossRefGoogle Scholar
  64. Wieler R (2002) Cosmic-ray-produced Noble gases in meteorites. Rev Mineral Geochem 47:125–170CrossRefGoogle Scholar
  65. Yin Q, Jacobsen SB, Yamashita K, Blichert-Toft J, Telouk P, Albarède F (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418:949–952CrossRefGoogle Scholar
  66. Yokochi R, Marty B (2004) A determination of the neon isotopic composition of the deep mantle. Earth Planet Sci Lett 225:77–88CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.GEOTOP, Research Center on the dynamics of the Earth SystemUniversité du Québec à MontréalMontréalCanada