Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White

Xenon Isotopes

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_203-1

Definition

Xenon is an inert gas and belongs to group VIIIA of the periodic table. Xenon has nine stable isotopes, second only to tin. The nine xenon isotopes are 124Xe, 126Xe, 128Xe, 129Xe, 130Xe, 131Xe, 132Xe, 134Xe, and 136Xe. Of these isotopes, 124,126,128,130Xe are nonradiogenic, 129Xe is radiogenic and 131,132,134,136Xe are fissiogenic. The relative abundances of these isotopes in the atmosphere are 0.095%, 0.089%, 1.910%, 26.4%, 4.017%, 21.23%, 26.91%, 10.44%, and 8.86%, respectively. The isotopic abundances in other reservoirs, such as crust, mantle, or groundwater, differ from the atmospheric abundances due to fractionation of I-Xe, U-Xe, and Pu-Xe and subsequent radioactive decay. This contribution will focus on the Xe isotopes in the solid Earth and atmosphere.

Introduction

Measurements of xenon isotopes in mantle-derived basalts provide information on processes as varied as volatile accretion, mantle degassing history, styles of mantle convection, and volatile exchange...

This is a preview of subscription content, log in to check access

References

  1. Agnor CB, Canup R, Levison HF (1999) On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142:219–237CrossRefGoogle Scholar
  2. Allegre CJ, Staudacher T, Sarda P (1987) Rare gas systematics – formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet Sci Lett 81:127–150CrossRefGoogle Scholar
  3. Avice G, Marty B (2014) The iodine–plutonium xenon age of the Moon–Earth system revisited. Phil Trans R Soc A 372:20130260.  https://doi.org/10.1098/rsta.2013.0260 CrossRefGoogle Scholar
  4. Avice G, Marty B, Burgess R (2017) The origin and degassing history of the Earth’s atmosphere revealed by Archean xenon. Nat Commun 8:15455.  https://doi.org/10.1038/ncomms15455 CrossRefGoogle Scholar
  5. Azbel IY, Tolstikhin IN (1990) Geodynamics, magmatism, and degassing of the Earth. Geochim Cosmochim Acta 54:139–154CrossRefGoogle Scholar
  6. Boehnke P, Caffee MW, Harrison TM (2015) Xenon isotopes in MORB source, not distinctive of early global degassing. Geophys Res Lett 42:4367–4374CrossRefGoogle Scholar
  7. Boulos MS, Manuel OK (1972) Extinct radioactive nuclides and production of xenon isotopes in natural gas. Nature 235:150–152Google Scholar
  8. Butler WA, Jeffery PM, Reynolds JH, Wasserburg GJ (1963) Isotopic variations in terrestrial xenon. J Geophys Res 68:3283–3291CrossRefGoogle Scholar
  9. Caffee MW, Hudson GB, Velsko C, Huss GR, Alexander EC Jr, Chivas AR (1999) Primordial noble gases from Earth’s mantle: identification of a primitive volatile component. Science 285:2115–2118CrossRefGoogle Scholar
  10. Caracausi A, Avice G, Burnard PG, Furi E, Marty B (2016) Chondritic xenon in the Earth’s mantle. Nature 533:82–85CrossRefGoogle Scholar
  11. Coltice N, Marty B, Yokochi R (2009) Xenon isotope constraints on the thermal evolution of the early Earth. Chem Geol 266:4–9CrossRefGoogle Scholar
  12. Harrison D, Burnard P, Turner G (1999) Noble gas behaviour and composition in the mantle: constraints from the Iceland Plume. Earth Planet Sci Lett 171(2):199–207CrossRefGoogle Scholar
  13. Hennecke EW, Manuel OK (1975) Noble gases in an Hawaiian xenolith. Nature 257:778–780CrossRefGoogle Scholar
  14. Holland G, Ballentine CJ (2006) Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441:186–191CrossRefGoogle Scholar
  15. Holland G, Cassidy M, Ballentine CJ (2009) Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326:1522–1525CrossRefGoogle Scholar
  16. Holland G, Sherwood Lollar B, Li L, Lacrampe-Couloume G, Slater GF, Ballentine CJ (2013) Deep fracture fluids isolated in the crust since the Precambrian era. Nature 497:357–360CrossRefGoogle Scholar
  17. Jacobsen SA, Morbidelli A, Raymond SN, O’Brien DP, Walsh KJ (2014) Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508:84–87CrossRefGoogle Scholar
  18. Kaneoka I, Takaoka N (1978) Excess 129Xe and high 3He/4He ratios in olivine phenocrysts of Kapuho lava and xenolithic dunites from Hawaii. Earth Planet Sci Lett 39:382–386CrossRefGoogle Scholar
  19. Kendrick MA, Scambelluri M, Honda M, Phillips D (2011) High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat Geosci 4:807–812CrossRefGoogle Scholar
  20. Kendrick MA, Honda M, Pettke T, Scambelluri M, Phillips D, Giuliani A (2013) Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth Planet Sci Lett 365:86–96CrossRefGoogle Scholar
  21. Kunz J, Staudacher T, Allegre CJ (1998) Plutonium-fission xenon found in Earth’s mantle. Science 280:877–880CrossRefGoogle Scholar
  22. Marty B (1989) Neon and xenon isotopes in MORB: implications for the earth–atmosphere evolution. Earth Planet Sci Lett 94:45–56CrossRefGoogle Scholar
  23. Marty B et al (2017) Xenon isotopes in 67P/Churyumov–Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356:1069–1072CrossRefGoogle Scholar
  24. Melosh HJ (1990) Giant impacts and the thermal state of the early Earth. In: Newsom H, Jones J (eds) Origin of the Earth. Oxford University Press, Oxford, pp 69–83Google Scholar
  25. Moreira M, Kunz J, Allègre C (1998) Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279:1178–1181CrossRefGoogle Scholar
  26. Mukhopadhyay S (2012) Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486:101–104CrossRefGoogle Scholar
  27. Ozima M, Podosek F, Igarashi G (1985) Terrestrial xenon isotope constraints on the early history of the Earth. Nature 315:471–474CrossRefGoogle Scholar
  28. Parai R, Mukhopadhyay S (2012) How large is the subducted water flux? New constraints on mantle regassing rates. Earth Planet Sci Lett 317–318:396–406CrossRefGoogle Scholar
  29. Parai R, Mukhopadhyay S (2015) The evolution of MORB and plume mantle volatile budgets: constraints from fission Xe isotopes in Southwest Indian Ridge basalts. Geochem Geophys Geosyst 16:719–735CrossRefGoogle Scholar
  30. Parai R, Mukhopadhyay S, Standish JJ (2012) Heterogeneous upper mantle Ne, Ar and Xe isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the Southwest Indian Ridge. Earth Planet Sci Lett 359–360:227–239CrossRefGoogle Scholar
  31. Pepin RO (1991) On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92:2–79CrossRefGoogle Scholar
  32. Pepin RO (1992) Origin of noble gases in the terrestrial planets. Annu Rev Earth Planet Sci 20:389–430CrossRefGoogle Scholar
  33. Pepin RO (2000) On the isotopic composition of primordial xenon in terrestrial planet atmospheres. Space Sci Rev 92:371–395CrossRefGoogle Scholar
  34. Pepin RO, Phinney D (1976) The formation interval of the Earth. Abstr Lunar Planet Sci Conf 7:682–684Google Scholar
  35. Pepin RO, Porcelli D (2002) Origin of noble gases in the terrestrial planets. Rev Mineral Geochem 47:191–246CrossRefGoogle Scholar
  36. Pepin RO, Porcelli D (2006) Xenon isotope systematics, giant impacts, and mantle degassing on the early Earth. Earth Planet Sci Lett 250(3–4):470–485CrossRefGoogle Scholar
  37. Pető MK, Mukhopadhyay S, Kelley KA (2013) Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the northern Lau back-arc basin. Earth Planet Sci Lett 369–370:13–23CrossRefGoogle Scholar
  38. Phinney D, Tennyson J, Frick U (1978) Xenon in CO2 well gas revisited. J Geophys Res 83:2313–2319CrossRefGoogle Scholar
  39. Porcelli D, Wasserburg G (1995) Mass transfer of helium, neon, argon, and xenon through a steady-state upper mantle. Geochim Cosmochim Acta 59:4921–4937CrossRefGoogle Scholar
  40. Poreda RJ, Farley KA (1992) Rare gases in Samoan xenoliths. Earth Planet Sci Lett 113:129–144CrossRefGoogle Scholar
  41. Pujol M, Marty B, Burnard P, Philippot P (2009) Xenon in Archean barite: weak decay of 130Ba mass-dependent isotopic fractionation and implication for barite formation. Geochim Cosmochim Acta 73:6834–6846CrossRefGoogle Scholar
  42. Pujol M, Marty B, Burgess R (2011) Chondritic-like xenon trapped in Archean rocks: a possible signature of the ancient atmosphere. Earth Planet Sci Lett 308:298–230CrossRefGoogle Scholar
  43. Reynolds JH (1963) Xenology. J Geophys Res 68:2939–2956CrossRefGoogle Scholar
  44. Sarda P, Moreira M, Staudacher T, Schilling J-G, Alleger CJ (2000) Rare gas systematics on the southernmost Mid-Atlantic Ridge: constraints on the lower mantle and the Dupal source. J Geophys Res 105:5973–5996CrossRefGoogle Scholar
  45. Schlichting HE, Mukhopadhyay S (2017) Atmospheric impact losses. Space Sci Rev (in review)Google Scholar
  46. Srinivasan B (1976) Barites – anomalous xenon from spallation and neutron-induced reactions. Earth Planet Sci Lett 31:129–141CrossRefGoogle Scholar
  47. Staudacher T, Allegre CJ (1982) Terrestrial xenology. Earth Planet Sci Lett 60:389–406CrossRefGoogle Scholar
  48. Staudacher T, Allegre CJ (1988) Recycling of oceanic-crust and sediments – the noble-gas subduction barrier. Earth Planet Sci Lett 89:173–183CrossRefGoogle Scholar
  49. Sumino H, Burgess R, Mizukami T, Wallis SR, Holland G, Ballentine CJ (2010) Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite. Earth Planet Sci Lett 294:163–172CrossRefGoogle Scholar
  50. Tolstikhin I, Hofmann AW (2005) Early crust on top of the Earth’s core. Phys. Earth Planet Interiors 148:109–130CrossRefGoogle Scholar
  51. Tolstikhin IN, O’Nions R (1996) Some comments on isotopic structure of terrestrial xenon. Chem Geol 129:185–199CrossRefGoogle Scholar
  52. Tolstikhin IN, Kramers JD, Hofmann AW (2006) A chemical Earth model with whole mantle convection: the importance of a core-mantle boundary layer (D″) and its early formation. Chem Geol 226:79–99CrossRefGoogle Scholar
  53. Tonks WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res 98:5319–5333CrossRefGoogle Scholar
  54. Trieloff M, Kunz J (2005) Isotope systematics of noble gases in the Earth’s mantle: possible sources of primordial isotopes and implications for mantle structure. Phys Earth Planet Interiors 148:13–38CrossRefGoogle Scholar
  55. Trieloff M, Kunz J, Clague DA, Harrison D, Allegre CJ (2000) The nature of pristine noble gases in mantle plumes. Science 288:1036–1038CrossRefGoogle Scholar
  56. Trieloff M, Kunz J, Allègre CJ (2002) Noble gas systematics of the Reunion mantle plume source and the origin of primordial noble gases in Earth’s mantle. Earth Planet Sci Lett 200:297–313CrossRefGoogle Scholar
  57. Tucker JM, Mukhopadhyay S, Schilling J-G (2012) The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle. Earth Planet Sci Lett 355–356:244–254CrossRefGoogle Scholar
  58. Tucker JT, Mukhopadhyay S (2014) Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet Sci Lett 393:254–265CrossRefGoogle Scholar
  59. Van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res Solid Earth 116:B01401. doi: 10.1029/2010jb007922
  60. Wetherill GW (1975) Radiometric chronology of Early solar system. Annu Rev Nucl Part Sci 25:283–328CrossRefGoogle Scholar
  61. Yokochi R, Marty B (2005) Geochemical constraints on mantle dynamics in the Hadean. Earth Planet Sci Lett 238:17–30CrossRefGoogle Scholar
  62. Zahnle KJ (2015) Xenon fractionation and Archean hydrogen escape. 46th Lunar and planetary science conference, The Woodlands, p 1549, 16–20 March 2015Google Scholar
  63. Zahnle KJ, Kasting JF, Pollack JB (1990a) Mass fractionation of noble gases in diffusion limited hydrodynamic hydrogen escape. Icarus 84:502–527CrossRefGoogle Scholar
  64. Zahnle KJ, Pollack JB, Kasting JF (1990b) Xenon fractionation in porous planetesimals. Geochim Cosmochim Acta 54:2577–2586CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesUniversity of California DavisDavisUSA