Skip to main content

Petroleum

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 159 Accesses

Definition

Petroleum, from greek petra (rock) and latin oleum (oil), is a mixture of natural origin, made of numerous organic molecules, mostly hydrocarbons, from 1 to 80 carbon atoms. Petroleum is found as a liquid phase (oil), a gaseous phase ( Natural Gas ), or a solid-like phase (bitumen) in the porosity and cracks of reservoir rocks where it has accumulated. These different forms result from a common origin, as petroleum is the product of the thermal or bacterial degradation of sedimentary organic matter in deep strata of sedimentary basins. The range of conditions produces a continuum of compositions between natural gas, oil, and bitumen.

History

Natural Oil-seeps have been used as sealing agent, adhesive, cosmetics, and fuel in oil lamps, from three millennia before BC in Ancient Egypt and the Middle East. Biomarker analysis has allowed to trace back the origin of these bitumen (Connan 1999). In Asia, hand-dug wells were used to produce petroleum from 900 BC (Hunt 1995;...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aitken CM, Jones DM, Larter SR (2004) Anaerobic degradation in deep subsurface oil reservoirs. Nature 431(7006):291–294

    Article  Google Scholar 

  • Behar F, Vandenbroucke M, Tang Y, Marquis F, Espitalie J (1997) Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Org Geochem 26(5):321–339

    Article  Google Scholar 

  • Boduszynski MM, Rechsteiner CE, Shafizadeh ASG, Carlson MSK (1998) Composition and properties of heavy crudes. Unitar centre, report 1998.202

    Google Scholar 

  • BP Statistical Review of World Energy, 66th edition, June 2017. BP p.l.c. 1 St James’s Square, London SW1Y 4PD , UK

    Google Scholar 

  • Burklé-Vitzthum V, Bunaceur R, Marquaire P-M, Montel F, Fusetti L (2011) Thermal evolution of n- and iso-alkanes in oils. Part 1: pyrolysis model for a mixture of 78 alkanes (C1-C32) including 13,206 free radical reactions. Org Geochem 42(5):439–450

    Article  Google Scholar 

  • Burnham AK, Braun RL, Gregg HR (1987) Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Energy Fuel 1:452–458

    Article  Google Scholar 

  • Burwood R, de Witte SM, Mycke B, Paulet J (1995) Petroleum geochemical characterization of the lower Congo coastal basin Bucomazi formation. In: Katz BJ (ed) Petroleum source rocks. Springer, Berlin, pp 235–263

    Chapter  Google Scholar 

  • Campbell CJ, Laherrère JH (1998) The end of cheap oil. Sci Am 1998:78–83

    Article  Google Scholar 

  • Carpentier B, Ungerer P, Kowalewski I, Magnier C, Courcy JP, Huc AY (1996) Molecular and isotopic fractionation of light hydrocarbons between oil and gas phases. Org Geochem 24(12):1115–1139

    Article  Google Scholar 

  • Carrigan WJ, Cole GA, Colling EL, Jones PJ (1995) Geochemistry of the upper Jurassic Tuwaiq mountain and Hanifa formation petroleum source rocks of Eastern Saudi Arabia. In: Katz BJ (ed) Petroleum source rocks. Springer, Berlin, pp 67–87

    Chapter  Google Scholar 

  • Collell J, Ungerer P, Galliero G, Yiannourakou M, Montel F, Pujol M (2014) Molecular simulation of bulk organic matter in type II shales in the middle of the oil formation window. Energy Fuel 28(12):7457–7466

    Article  Google Scholar 

  • Connan J (1999) Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals secrets of past civilizations. Philos Trans R Soc B 354(1379):33–50. https://doi.org/10.1098/rstb.1999.0358

    Article  Google Scholar 

  • Connan J, Lacrampe-Couloume G, Magot M, (1997) Anaerobic biodegradation of petroleum in reservoirs: a widespread phenomenon in nature. In: 18th international meeting on organic geochemistry, Maastricht, Book of Abstracts, Part 1, pp 5–6

    Google Scholar 

  • Dominé F (1991) High pressure pyrolysis of n-hexane, 2,4-dimethylpentane and 1-phenylbutane. Is pressure an important geochemical parameter? Org Geochem 17(5):619–634

    Article  Google Scholar 

  • Dominé F, Bounaceur R, Scacchi G, Marquaire P-M, Dessort D, Pradier B, Brevart O (2002) Up to what temperature is petroleum stable? New insights from a 5200 free radical reactions model. Org Geochem 33(12):1487–1499

    Article  Google Scholar 

  • Doornhof D, Kristiansen TG, Nagel NB, Pattillo PD, Sayers C (2006) Compaction and subsidence. Schlumberger Oilfield Rev 18(3): 50–68

    Google Scholar 

  • Durand B (1988) Understanding of HC migration in sedimentary basins – present state of knowledge. Org Geochem 13:445–459

    Article  Google Scholar 

  • Eschard R, Huc AY (2008) Habitat of biodegraded heavy oils: industrial implications. Oil Gas Sci Technol – Rev IFP 63(5):587–607

    Article  Google Scholar 

  • Espitalié J, Deroo G, Marquis F (1985/1986) La pyrolyse Rock Eval et ses applications. Revue de l’Institut Français du Pétrole, Part 1: 40: 563–579. Part 2: 40:755–784; Part 3: 41:73–89

    Google Scholar 

  • Enguehard F, Kressmann S, Dominé F (1990) Kinetics of dibutylether pyrolysis at high pressure- experimental study. Org Geochem 16:155–160

    Article  Google Scholar 

  • Filby RH, Branthaver JF (1987) Metal complexes in fossil fuels – geochemistry, characterization, and processing, ACS symposium series, vol 344. American Chemical Society, Washington, DC, 485 pp

    Book  Google Scholar 

  • Gratier JP, Dysthe D, Renard F (2013) The role of pressure solution creep in the ductility of the earth’s upper crust. Adv Geophys, Elsevier 54:47–179

    Article  Google Scholar 

  • Huc AY (2010) Heavy crude oils: from geology to upgrading: an overview. Editions Technip, Paris, 442 p

    Google Scholar 

  • Hunt JM (1995) Petroleum geochemistry and geology, 2nd edn. Freeman, New York, 743 p

    Google Scholar 

  • IFPEN (2017) Personal communications from G. Maisonnier and R. Vially. July 2017

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis, Chapter 6. In: Ciais Ph, Sabine Ch (eds) Carbon and other geochemical cycles. Downloaded from https://www.ipcc.ch/report/ar5/wg1/

  • Jagu MM, Nader FH, Roure F, Matenco L (2016) Optimal reservoirs for CCS and EOR in the kingdom of Saudi Arabia: an overview. Arab J Geosci 9:604, pp 1–15

    Article  Google Scholar 

  • Kelemen SR, Afeworki M, Gorbaty ML, Sansone M, Kwiatek PJ, Walters CC, Freund H, Siskin M, Bence AE, Curry DJ, Solum M, Pugmire RJ, Vandenbroucke M, Leblond M, Behar F (2007) Direct characterization of Kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energy Fuel 21(3):1548–1561

    Article  Google Scholar 

  • Konert G, Afifi AM, Al-Hajri SA (2001) Paleozoic stratigraphy and hydrocarbon habitat of the Arabian plate. GeoArabia 6(3):407–442

    Google Scholar 

  • Lewan MD, Illich H, Raiswell R, Mackenzie AS, Durand B, Manning DAC, Comet PA, Berner A, de Leeuw JW (1985) Evaluation of petroleum generation by hydrous pyrolysis experimentation [and discussion]. Philos Trans R Soc Lond A 315:123–134

    Article  Google Scholar 

  • Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings – old and new insights. Sediment Geol 140: 143–175

    Article  Google Scholar 

  • Mackenzie A, McKenzie D (1983) Isomerization and aromatization of hydrocarbons in sedimentary basins formed by extension. Geol Mag 120(5):417–470

    Article  Google Scholar 

  • McAuliffe C (1966) Solubility in water of paraffin, cycloparaffin, olefin, acetlylene, cycloolefin, and aromatic hydrocarbons. J Phys Chem 70(4):1267–1275

    Article  Google Scholar 

  • Mehrotra AK, Svrcek WY (1986) Viscosity of compressed Athabasca bituem. Can J Chem Eng 64:844–847.14

    Article  Google Scholar 

  • Mullins OC, Sabbah H, Eyssautier J, Pomerantz AE, Barré L, Andrews AB, Ruiz-Morales Y, Mostowfi F, McFarlane R, Goual L, Lepkowicz R, Cooper T, Orbulescu J, Leblanc RM, Edwards J, Zare RM (2012) Advances in asphaltene science and the Yen-Mullins model. Energy Fuel 26:3986–4003

    Article  Google Scholar 

  • Pedersen KS, Christensen PL, Shaikh JA (2014) Phase behavior of petroleum reservoir fluids. CRC press, London, 465 p

    Google Scholar 

  • Radke M, Welte DH (1981) The Methylphenanthrene Index (MPI-1) a maturity parameter based on aromatic hydrocarbons. In: Advances in organic geochemistry 1981. Wiley, Chichester, pp 504–512, 1983

    Google Scholar 

  • Roenningsen HP, Björndal B, Hansen AB, Pedersen WB (1991) Wax precipitation from North Sea crude oils. 1. Crystallization and dissolution temperatures, and Newtonian and non-Newtonian flow properties. Energy Fuel 5:895–908

    Article  Google Scholar 

  • Rogel E, Ovalles C, Moir M (2012) Asphaltene chemical characterization as a function of solubility: effects on stability and aggregation. Energy Fuels 26:2655–2662

    Article  Google Scholar 

  • Rogel E, Ovalles C, Pradhan A, Leung P, Chen N (2013) Sediment formation in residue hydroconversion processes and its correlation to asphaltene behavior. Energy Fuel 27(11):6587–6593

    Article  Google Scholar 

  • Rojey A, Jaffret C, Cornot-Gandolphe S, Durand B, Jullian S, Valais M (1997) Natural gas: production, processing, transport. Technip Editions, Paris, 401 p

    Google Scholar 

  • Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44(5):649–661

    Article  Google Scholar 

  • Schuler BM, Meyer G, Pena D, Mullins OC, Gross L (2015) Unraveling the molecular structures of asphaltenes by Atomic force microscopy. J Am Chem Soc 137:9870–9876

    Article  Google Scholar 

  • Talwani M (2002) Energy study- Latin America: the Orinoco oil belt in Venezuela (or Heavy oil to the rescue?). James A Baker III institute for public policy, Rice University, Houston, Sept 2002

    Google Scholar 

  • Thornton SE (2015) The history of oil exploration in the Union of Myanmar. In: AAPG/SEG international conference & exhibition, Melbourne, 13–16 Sept 2015

    Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, Berlin, 700 p

    Book  Google Scholar 

  • Tissot B, Durand B, Espitalié J, Combaz A (1974) Influence of the nature and diagenesis of organic matter in formation of petroleum. Am Ass Petr Geol Bull 58:499–506

    Google Scholar 

  • Tissot BP, Pelet R, Ungerer P (1987) Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bull 71(12):1445–1466

    Google Scholar 

  • Total Exploration and production (2006) Extraheavy oils and bitumen – reserves for the future. Know how series, Total SA, Paris, 2 place de la Coupole, La Défense 6, 92400 Courbevoie, France. www.total.com

  • Treibs A (1934) Chlorophyll– und Häminderivate in bituminösen Gesteinen, Erdölen, Erdwachsen, und Asphalten. Ein Beitrag zur Entstehung des Erdöls. Justus Liebig Ann Chemie 510:42–62

    Article  Google Scholar 

  • Tremblay B, Sedgwick G, Forshner K (1997) Simulation of cold production in heavy-oil reservoirs: wormhole dynamics. Soc Petrol Eng 12(2):100. https://doi.org/10.2118/35387-PA

    Google Scholar 

  • Trindade LAF, Dias JL, Mello MR (1995) Sedimentological and geochemical characterization of the Lagoa Feia formation, rift phase of the Campos basin, Brazil. In: Katz BJ (ed) Petroleum source rocks. Springer, Heidelberg, pp 149–165

    Chapter  Google Scholar 

  • Ungerer P (1990) State of the art of research in kinetic modeling of oil formation and expulsion. Org Geochem 16(1–3):1–25

    Article  Google Scholar 

  • Ungerer P, Faissat B, Leibovici C, Zhou H, Behar E, Moracchini G, Courcy JP (1995) High pressure – high temperature reservoir fluids: investigation of synthetic condensate gases containing a solid hydrocarbon. Fluid Phase Equilib 111:287–311

    Article  Google Scholar 

  • Ungerer P, Collell J, Yiannourakou M (2015) Molecular modeling of the volumetric and thermodynamic properties of Kerogen: influence of organic type and maturity. Energy Fuel 29(1):91–105

    Article  Google Scholar 

  • US DOE-EIA (Department of Energy – Energy Information Administration) (2013) Technically recoverable shale oil and shale gas resources: an assessment of 137 shale formations in 41 countries outside the United States. Public report, 730 p, Jun 2013. Washington DC 20585 (USA). Downloaded from www.eia.gov

  • Van den Bark E, Thomas O (1981) Ekofisk: first of the giant oil fields in Western Europe. AAPG Bull 65:2341–2363

    Google Scholar 

  • van Krevelen DW (1993) Coal – typology – physics – chemistry – constitution, 1st edn. Elsevier, Amsterdam.

    Google Scholar 

  • Vandenbroucke M (1993) Migration of hydrocarbons. In: Bordenave ML (ed) Applied petroleum geochemistry. Editions Technip, Paris, pp 123–148

    Google Scholar 

Download references

Acknowledgments

The author thanks Guy Maisonnier, Roland Vially, Bernard Durand, and François Roure for their help and advice in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Ungerer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Ungerer, P. (2018). Petroleum. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_188-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_188-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics