Skip to main content

Coal

  • Living reference work entry
  • First Online:
  • 318 Accesses

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Coal is a naturally occurring sedimentary carbonaceous rock composed of at least 50% organic matter by weight, and 70% carbonaceous material by volume, mostly from the diagenesis (chemical and physical alteration) of plant material in buried peat (Schopf 1956, 1966; Alpern and DeSousa 2002). Coal is a solid hydrocarbon . It is a rock that can burn. Coal does not have a distinct chemical formula, although it is dominated by complexly bound C, H, O, N, and S. Coal has an organic matrix but also contains inorganic (mineral) and fluid components. The chemical variability in coal is a result of (1) variability in the soils and weathered surfaces upon which the peat accumulated, (2) different types of plants and plant remains in peat, different types of peat mires, (3) the depositional history of the peat mire, (4) the syndepositional environments lateral to the peat which contributed inorganic sediment to the mire, (5) burial environments and history, (6) the long...

This is a preview of subscription content, log in via an institution.

References

  • Adriano DC, Page AL, Elsewi AA, Chang AC, Staughan I (1980) Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review. J Environ Qual 9:333–334

    Article  Google Scholar 

  • Alpern B, de Sousa ML (2002) Documented international enquiry on solid sedimentary fossil fuels; coal: definitions, classifications, reserves-resources, and energy potential. Int J Coal Geol 50(1):3–41

    Article  Google Scholar 

  • Andrejko MJ, Cohen AD, Raymond R (1983) Origin of mineral matter in peat. In: Raymond R, Andrejko MJ (eds) Mineral matter in peat, its occurrence, form, and distribution. Los Alamos National Laboratory, Los Alamos, pp 3–24

    Google Scholar 

  • Appalachian Regional Commission (1969) Acid mine drainage in Appalachia: Congressional house document no. 91-180, v. I, II, and III, Washington, DC

    Google Scholar 

  • ASTM (2014) D388-12 Standard classification of coal by rank. ASTM International, West Conshohocken, v. 5.06–Gaseous fuels; Coal and coke; Bioenergy and industrial chemicals from biomass: 396–402

    Google Scholar 

  • Barnes MA, Barnes WC, Bustin RM (1984) Diagenesis 8. Chemistry and evolution of organic matter. Geosci Can 11(3):102–114

    Google Scholar 

  • Berkowitz N (1985) The chemistry of coal. Coals science and technology, vol 7. Elsevier, New York

    Google Scholar 

  • Bohacs K, Suter J (1997) Sequence stratigraphic distribution of coaly rocks: fundamental controls and paralic examples. Am Assoc Pet Geol Bull 81(10):1612–1639

    Google Scholar 

  • Bostick NH (1979) Microscopic measurement of the level of catagenesis of solid organic matter in sedimentary rocks to aid exploration for petroleum and to determine former burial temperatures a review. SEPM Spec Publ 26:17–43

    Google Scholar 

  • Bouška V (1981) Geochemistry of coal. Coal science and technology, vol 1. Elsevier, New York

    Google Scholar 

  • Brady BC, Kania T, Smith WM, Hornberger RJ (eds) (1998) Coal mine drainage prediction and pollution prevention in Pennsylvania. Pennsylvania Department of Environmental Protection, Harrisburg

    Google Scholar 

  • Brown HR, Taylor GH, Cook AC (1964) Prediction of coke strength from the rank and petrographic composition of Australian coals. Fuel 43:43–54

    Google Scholar 

  • Bustin RM (1999) Coal origins and diagenesis. In: Marshall CP, Rhodes WF (eds) Encyclopedia of geochemistry. Kluwer, Boston, pp 90–92

    Google Scholar 

  • Bustin RM, Barnes MA, Barnes WC (1985) Diagenesis 10. Quantification and modelling of organic diagenesis. Geosci Can 12(1):4–21

    Google Scholar 

  • Bustin RM, Ross JV, Rouzaud JN (1995) Mechanisms of graphite formation from kerogen: experimental evidence. Int J Coal Geol 28(1):1–36

    Article  Google Scholar 

  • Butler J, Marsh H, Goodarzi F (1988) World coals: genesis of the world’s major coalfields in relation to plate tectonics. Fuel 67(2):269–274

    Article  Google Scholar 

  • Casagrande DJ (1987) Sulphur in peat and coal. In: Scott AC (ed) Coal and coal-bearing strata–recent advances. Geological Society, London, Special Publications 32(1):87–105

    Google Scholar 

  • Cecil CB, Stanton RW, Neuzil SG, Dulong FT, Ruppert LF, Pierce BS (1985) Paleoclimate controls on late Paleozoic sedimentation and peat formation in the central Appalachian Basin (USA). Int J Coal Geol 5(1):195–230

    Article  Google Scholar 

  • Clymo RS (1987) Rainwater-fed peat as a precursor of coal. In Scott AC (ed) Coal and coal-bearing strata–recent advances. Geological Society, London, Special Publications 32(1):17–23

    Google Scholar 

  • Collinson ME, Scott AC (1987) Implications of vegetational change through the geological record on models for coal-forming environments. In Scott AC (ed) Coal and coal-bearing strata–recent advances. Geological Society, London, Special Publications 32(1):67–85

    Google Scholar 

  • Cross AT, Phillips TL (1990) Coal-forming through time in North America. Int J Coal Geol 16(1):1–46

    Article  Google Scholar 

  • Daniels EJ, Altaner SP, Marshak S, Eggleston JR (1990) Hydrothermal alteration in anthracite from eastern Pennsylvania: implications for mechanisms of anthracite formation. Geology 18(3):247–250

    Article  Google Scholar 

  • Davis A (1982) Sulfur in coal. Earth and Mineral Science Letters 51:1–18

    Google Scholar 

  • Davis A, Russell SJ, Rimmer SM, Yeakel JD (1984) Some genetic implications of silica and aluminosilicates in peat and coal. Int J Coal Geol 3(4):293–314

    Article  Google Scholar 

  • De Leeuw JW, Largeau C (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. In: Engel M, Macko SA (eds) Organic geochemistry. Springer, New York, pp 23–72

    Chapter  Google Scholar 

  • Diessel CFK (1992) Coal formation and sequence stratigraphy. Springer, Berlin

    Book  Google Scholar 

  • Eble CF, Grady WC (1993) Palynologic and petrographic characteristics of two middle Pennsylvanian coal beds and a probable modern analogue. In: Cobb JC, Cecil CB (eds) Modern and ancient coal-forming environments. Geological Society of America, Special Paper 286:119–138

    Google Scholar 

  • Energy Information Administration (1997) Effects of title IV of the Clean Air Act Amendments of 1990 on utilities: an update: U.S. Department of Energy, Washington, DC, EIA-0582

    Google Scholar 

  • Energy Information Administration (2001) Reducing emissions of sulfur dioxide, nitrogen oxides, and mercury from electric power plants: U.S. Department of Energy, Office of Integrated Analysis and Forecasting, Washington, DC

    Google Scholar 

  • Esterle JS, Kolatschek Y, O’Brien G (2002) Relationship between in situ coal stratigraphy and particle size and composition after breakage in bituminous coals. Int J Coal Geol 49(2):195–214

    Article  Google Scholar 

  • European Union (EU) (2016) Climate action. Website, http://ec.europa.eu/clima/index_en.htm. Accessed Jan 2016

  • Finkelman RB (1981) Modes of occurrence of trace elements in coal. U.S. Geological Survey Open-File Report, OFR-81-99

    Google Scholar 

  • Finkelman R B (1985) Mode of occurrence of accessory sulfide and selenide minerals in coal. In: Cross AT (ed) Neuviene Congress International de Stratigraphic et de Geologic du Carbonifere. Compte Rendu. 4:407–412

    Google Scholar 

  • Finkelman RB (1995) Mode of occurrence of environmentally-sensitive trace elements in coal. In: Swaine DJ, Goodarzi F (eds) Environmental aspects of trace elements in coal. Springer, New York, Energy and the Environment 2:24–50

    Google Scholar 

  • Finkelman R, Greb S (2008) Environmental and health impacts [of coal], Chapter 10. In: Suárez-Ruiz I, Crelling JC (eds) Applied coal petrology-the role of petrology in coal utilization. Elsevier Publications, Amsterdam, pp 263–287

    Chapter  Google Scholar 

  • Given PH (1984) An essay on the organic geochemistry of coal. In: Gorbaty ML, Larsen JW, Wender I (eds) Coal science, v.3. Academic, New York: 63–252

    Google Scholar 

  • Given PH, Miller RN (1987) The association of major, minor and trace inorganic elements with lignites. III. Trace elements in four lignites and general discussion of all data from this study. Geochim Cosmochim Acta 51(7):1843–1853

    Article  Google Scholar 

  • Gluskoter HJ, Ruch RR, Miller WG, Cahill RA, Dreher GB (1977) Trace elements in coal: occurrence and distribution. Illinois State Geological Survey, Circular, Urbana 499

    Google Scholar 

  • Goodarzi F (1988) Elemental distribution in coal seams at the Fording coal mine, British Columbia, Canada. Chem Geol 68:129–154

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1(2):182–195

    Article  Google Scholar 

  • Gould KW, Smith JW (1979) The genesis and isotopic composition of carbonates associated with some Permian Australian coals. Chem Geol 24:137–150

    Google Scholar 

  • Greb SF (2006) Coal and the environments references: Kentucky Geological Survey, University of Kentucky. Website, http://www.uky.edu/KGS/coal/coal_reference.htm. Accessed Jan 2016

  • Greb SF, DiMichele WA, Gastaldo RA (2006a) Evolution and importance of wetlands in earth history. In: Greb SF, DiMichele WA (eds) Wetlands through time. Geological Society of America Special Paper 399:1–40

    Google Scholar 

  • Greb SF, Eble CF, Peters DC, Papp AR (2006b) Coal and the environment. American Geological Institute, Environmental Education Series, Alexandria

    Google Scholar 

  • Hagemann HW, Hollerbach A (1980) Relationship between the macropetrographic and organic geochemical composition of lignites. Phys Chem Earth 12:631–638

    Article  Google Scholar 

  • Hatcher PG, Clifford DJ (1997) The organic geochemistry of coal: from plant materials to coal. Org Geochem 27(5):251–274

    Article  Google Scholar 

  • Hatcher PG, Breger IA, Szeverenyi N, Maciel GE (1982) Nuclear magnetic resonance studies of ancient buried wood–II. Observations on the origin of coal from lignite to bituminous coal. Org Geochem 4(1):9–18

    Article  Google Scholar 

  • Holz M, Kalkreuth W, Banerjee I (2002) Sequence stratigraphy of paralic coal-bearing strata: an overview. Int J Coal Geol 48(3):147–179

    Article  Google Scholar 

  • Hood ACCM, Gutjahr CCM, Heacock RL (1975) Organic metamorphism and the generation of petroleum. Am Assoc Pet Geol Bull 59(6):986–996

    Google Scholar 

  • Houghton JT, Jenkins GJ, Ephraums JJ (eds) (1990) Report prepared for intergovernmental panel on climate change by working group I. Cambridge University Press, Cambridge

    Google Scholar 

  • Hower JC, Gayer RA (2002) Mechanisms of coal metamorphism: case studies from Paleozoic coalfields. Int J Coal Geol 50(1):215–245

    Article  Google Scholar 

  • Hower JC, Graese AM, Klapheke J (1987) Influence of microlithotype composition on Hardgrove grindability for selected eastern Kentucky coals. Int J Coal Geol 7:227–244

    Article  Google Scholar 

  • Hower JC, Ruppert LF, Eble CF (1999) Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. Int J Coal Geol 39:141–153

    Google Scholar 

  • Hunt JM (1979) Petroleum geochemistry and geology. W.H. Freeman and Co, San Francisco, 617p

    Google Scholar 

  • Hunt JW, Smyth M (1989) Origin of inertinite-rich coals of Australian cratonic basins. Int J Coal Geol 11(1):23–46

    Article  Google Scholar 

  • Hutton AC, Hower JC (1999) Cannel coals: implications for classification and terminology. Int J Coal Geol 41(1):157–188

    Article  Google Scholar 

  • International Committee for Coal and Organic Petrology (ICCP) (1998) The new vitrinite classification (ICCP system 1994). Fuel 77:349–358

    Google Scholar 

  • International Committee for Coal and Organic Petrology (ICCP) (2001) The new inertinite classification (ICCP system 1994). Fuel 80:459–471

    Article  Google Scholar 

  • International Committee for Coal Petrology (ICCP) (1963) International handbook of coal petrography, 2nd edn. Centre National de la Recherche Scientifique, Academy of Sciences of the USSR, Paris, Moscow

    Google Scholar 

  • International Committee for Coal Petrology (ICCP) (1971) International handbook of coal petrology, first supplement to, 2nd edn. Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  • ISO (International Organization for Standardization) (2005) Classification of coal. ISO (International Organization for Standardization), 11760. 1st edition, Geneva

    Google Scholar 

  • Izquierdo M, Querol X (2012) Leaching behaviour of elements from coal combustion fly ash: an overview. Int J Coal Geol 94:54–66

    Article  Google Scholar 

  • Jarrett PM (ed) (1983) Testing of peats and organic soils. Symposium Proceedings, Toronto, Canada, June 23, 1982, ASTM Committee D-18 on Soil and Rock, ASTM Special Technical Publication 820

    Google Scholar 

  • Kolker A, Chou CL (1994) Cleat-filling calcite in Illinois Basin coals: trace-element evidence for meteoric fluid migration in a coal basin. J Geol 102(1):111–116

    Article  Google Scholar 

  • Krevelen DW van (1952) Some chemical aspects of coal genesis and coal structure. In: Troisième Congres pour l’avancement des études de stratigraphie et de géologie du Carbonifère, Heelen, Compte Rendu 1:359–363

    Google Scholar 

  • Krevelen DW van (1993) Coal: typology, physics, chemistry, constitution, 3rd edn. Elsevier, New York

    Google Scholar 

  • Levine JR (1993) Coalification: the evolution of coal as source rock and reservoir rock for oil and gas. In: Law BE, Rice, DD (eds) Hydrocarbons from coal. American Association of Petroleum Geologists, Studies in Geology, 38:39–77

    Google Scholar 

  • Li Z, Ward CR, Gurba LW (2010) Occurrence of non-mineral inorganic elements in macerals of low-rank coals. Int J Coal Geol 81(4):242–250

    Article  Google Scholar 

  • Littke R (1999) Coal: Vitrinite reflectance and maturity. In: Marshall CP, Rhodes WF (eds) Encyclopedia of geochemistry. Kluwer, Boston, p 96

    Google Scholar 

  • Lopatin NV (1971) Temperature and geologic time as factors in coalification (in Russian). Akad Nauk SSSR Izv Ser Geol 3:95–106

    Google Scholar 

  • Mackowsky M-T (1982) Minerals and trace elements occurring in coal. In: Stach E, Mackowsky M-T, Teichmüller M, Taylor GH, Chandra D, Teichmüller R (eds) Stach’s textbook of coal petrology, 3rd edn. Gebrüder Borntraeger, Berlin, pp 153–171

    Google Scholar 

  • Marzec A (2002) Towards an understanding of the coal structure: a review. Fuel Process Technol 77:25–32

    Article  Google Scholar 

  • Mastalerz M, Bustin RM (1993) Variation in maceral chemistry within and between coals of varying rank: an electron microprobe and micro-FTIR investigation. J Microsc 171(2):153–166

    Article  Google Scholar 

  • Mathews JP, Chaffee AL (2012) The molecular representations of coal–a review. Fuel 96:1–14

    Article  Google Scholar 

  • Mathews JP, Van Duin AC, Chaffee AL (2011) The utility of coal molecular models. Fuel Process Technol 92(4):718–728

    Article  Google Scholar 

  • McCabe PJ (1984) Depositional environments of coal and coal-bearing strata. In: Rahmani RA, Flores, RM (eds) Sedimentology of coal and coal-bearing sequences. International Association of Sedimentologists, Special Publication 7:13–42

    Google Scholar 

  • Miller RN, Given PH (1986) The association of major, minor and trace inorganic elements with lignites. I. Experimental approach and study of a North Dakota lignite. Geochim Cosmochim Acta 50(9):2033–2043

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New York

    Google Scholar 

  • Miura K (2000) Mild conversion of coal for producing valuable chemicals. Fuel Process Technol 62(2):119–135

    Article  Google Scholar 

  • Moore PD (1989) The ecology of peat-forming processes: a review. Int J Coal Geol 12(1):89–103

    Article  Google Scholar 

  • Moore TA, Shearer JC (1999) Coal: types and characteristics. In: Marshall CP, Rhodes WF (eds) Encyclopedia of geochemistry. Kluwer, Boston, pp 92–96

    Google Scholar 

  • Moore TA, Shearer JC (2003) Peat/coal type and depositional environment – are they related? Int J Coal Geol 56(3):233–252

    Article  Google Scholar 

  • Mukhopadhyay PK, Hatcher PG (1993) Composition of coal. In: Law BE, Rice DD (eds) Hydrocarbons from coal. American Association of Petroleum Geologists, Studies in Geology 38:79–118

    Google Scholar 

  • National Research Council (1990) Surface mining effects: committee on ground water recharge in surface-mined areas. Water Science and Technology Board, National Research Council, National Academy Press, Washington, DC

    Google Scholar 

  • Neuzil SG, Supardi SG, Cecil CB, Kane JS, Soedjono K (1993) Inorganic geochemistry of domed peat in Indonesia and its implication for the origin of mineral matter in coal. In: Cobb JC, Cecil CB (eds) Modern and ancient coal-forming environments. Geological Society of America, Special Paper 286:23–44

    Google Scholar 

  • Nissenbaum A, Swaine DJ (1976) Organic matter-metal interactions in recent sediments: the role of humic substances. Geochim Cosmochim Acta 40(7):809–816

    Article  Google Scholar 

  • O’Keefe JM, Bechtel A, Christanis K, Dai S, DiMichele WA, Eble CF, Esterle JS, Mastalerz M, Raymond AL, Valentim BV, Wagner NJ, Ward CR, Hower JC (2013) On the fundamental difference between coal rank and coal type. Int J Coal Geol 118:58–87

    Article  Google Scholar 

  • Pickel W, Kus J, Flores D, Kalaizidis S, Christanis K, Cardott BJ, Misz-Kennan M, Rodrigues S, Hentschel A, Hamor-Vido M, Crosdale P, Wagner N, ICCP (2017) Classification of liptinite – ICCP system 1994. Int J Coal Geol 169:40–61

    Article  Google Scholar 

  • Phillips TL (1980) Stratigraphic and geographic occurrences of permineralized coal-swamp plants-Upper Carboniferous of North America and Europe. Biostratigraphy of fossil plants: 25–92

    Google Scholar 

  • Postma D (1982) Pyrite and siderite formation in brackish and freshwater swamp sediments. Am J Sci 282(8):1151–1183

    Article  Google Scholar 

  • Postma D (1977) The occurrence and chemical composition of recent Fe-rich mixed carbonates in a river bog. J Sediment Petrol 47:1089–1098

    Google Scholar 

  • Price LC (1983) Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute paleogeothermometer. J Pet Geol 6(1):5–37

    Article  Google Scholar 

  • Quigley TM, Mackenzie AS (1988) The temperatures of oil and gas formation in the sub-surface. Nature 333(6173):549–552

    Article  Google Scholar 

  • Rao CP, Gluskoter HJ (1973) Occurrence and distribution of minerals in Illinois coals. Circular, 476. Illinois State Geological Survey, Urbana

    Google Scholar 

  • Rashid MA (1974) Absorption of metals on sedimentary and peat humic acids. Chem Geol 13(2):115–123

    Article  Google Scholar 

  • Renton JJ (1982) Mineral matter in coal. In: Meyers RA (ed) Coal structures. Academic, New York, pp 283–326

    Chapter  Google Scholar 

  • Renton JJ, Cecil CB, Stanton R, Dulong F (1979) Compositional relationships of plants and peats from modern peat swamps in support of a chemical coal model. In: Donaldson AC, Presley MW, Renton JJ (eds) Carboniferous coal short course and guidebook, vol 3. West Virginia Geologic and Economic Survey, Morgantown, pp 43–56

    Google Scholar 

  • Ruppert LF, Neuzil, SG, Cecil CB, Kane JS (1993) Inorganic constituents from samples of domed and lacustrine peat, Sumatra, Indonesia. In: Cobb JC, Cecil CB (eds) Modern and ancient coal-forming environments. Geological Society of America Special Paper 286:83–96

    Google Scholar 

  • Ruppert LF, Hower JC, Ryder RT, Levine JR, Trippi MH, Grady WC (2010) Geologic controls on thermal maturity patterns in Pennsylvanian coal-bearing rocks in the Appalachian basin. Int J Coal Geol 81:169–181

    Article  Google Scholar 

  • Schobert HH, Song C (2002) Chemicals and materials from coal in the 21st century. Fuel 81:15–32

    Article  Google Scholar 

  • Schopf JM (1948) Variable coalification; the processes involved in coal formation. Econ Geol 43(3):207–225

    Article  Google Scholar 

  • Schopf JM (1956) A definition of coal. Econ Geol 51(6):521–527

    Article  Google Scholar 

  • Schopf JM (1960) Field description and sampling of coal beds. U.S. Geological Survey, Bulletin 1111-B, 70 p.

    Google Scholar 

  • Schopf JM (1966) Definitions of peat and coal and of graphite that terminates the coal series (graphocite). J Geol 74(5):584–592

    Article  Google Scholar 

  • Schweinfurth SP, Finkelman RB (2003) Coal–a complex natural resource: an overview of factors affecting coal quality and use in the United States. Circular, 1143. U.S. Geological Survey, Urbana

    Google Scholar 

  • Scott AC (2002) Coal petrology and the origin of coal macerals: a way ahead? Int J Coal Geol 50(1):119–134

    Article  Google Scholar 

  • Scott AC (1989) Observations on the nature and origin of fusain. Int J Coal Geol 12(1):443–475

    Article  Google Scholar 

  • Scott AC, Mattey DP, Howard R (1996) New data on the formation of Carboniferous coal balls. ‎Rev Palaeobot Palynol 93:317–331

    Google Scholar 

  • Shearer JC, Moore TA (1999) Coal: organic petrography. In: Marshall CP, Rhodes WF (eds) Encyclopedia of geochemistry. Kluwer, Boston, pp 87–90

    Google Scholar 

  • Shotyk WH, Nesbitt W, Fyfe WS (1992) Natural and antropogenic enrichments of trace metals in peat profiles. Int J Coal Geol 20:49–84

    Google Scholar 

  • Spears DA (1987) Mineral matter in coals, with special reference to the Pennine Coalfields. In: Scottt AC (ed) Coal and coal-bearing strata–recent advances. Geological Society, London, Special Publications 32:171–185

    Google Scholar 

  • Stach E, Mackowsky M-T, Teichmüller M, Taylor GH, Chandra D, Teichmüller R (1982) Stach’s textbook of coal petrology. Gebrüder Borntraeger, Stuttgart

    Google Scholar 

  • Staub JR (1991) Comparisons of central Appalachian carboniferous coal beds by benches and a raised Holocene peat deposit. Int J Coal Geol 18(1):45–69

    Article  Google Scholar 

  • Staub JR, Cohen AD (1978) Kaolinite enrichment beneath coals; a modern analog, Snuggedy swamp, South Carolina. J Sediment Petrol 48:203–210

    Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, IPCC (eds) (2013) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Stolper DA, Lawson M, Davis CL, Ferreira AA, Neto ES, Ellis GS, Lewan MD, Martini AM, Tang Y, Schoell M, Sessions AL (2014) Formation temperatures of thermogenic and biogenic methane. Science 344(6191):1500–1503

    Article  Google Scholar 

  • Stopes M (1919) On the four visible ingredients in banded bituminous coal. Proc R Soc Lond B9:470–487

    Article  Google Scholar 

  • Stopes MC (1935) On the petrology of banded bituminous coals. Fuel 14:4–13

    Google Scholar 

  • Stopes MC, Watson DMS (1909) On the present distribution and origin of the calcareous concretions in coal seams, known as “coal balls”. Phil Trans R Soc Lond B 200:167–218

    Article  Google Scholar 

  • Suárez-Ruiz I, Crelling JC (eds) (2008) Applied coal petrology–the role of petrology in coal utilization. Elsevier Publications, New York

    Google Scholar 

  • Swaine DJ (2013) Trace elements in coal. Butterworth-Heinemann, Boston

    Google Scholar 

  • Sýkorová I, Pickel W, Christanis K, Wolf M, Taylor GH, Flores D (2005) Classification of huminite–ICCP system 1994. Int J Coal Geol 62:85–106

    Article  Google Scholar 

  • Taylor GH, Liu SY, Diessel CFK (1989) The cold-climate origin of inertinite-rich Gondwana coals. Int J Coal Geol 11(1):1–22

    Article  Google Scholar 

  • Taylor GH, Teichmüller M, Davis A, Diessel CFK, Littke R, Robert P (1998) Organic petrology. Gebrüder Borntraeger, Berlin/Stuttgart

    Google Scholar 

  • Teichmüller M (1974) Generation of petroleum-like substances in coal seams as seen under the microscope. In: Tissot BP, Bienner F (eds) Advances in geochemistry. Éditions Technip, Paris. Proceedings of the 6th international meeting on organic geochemistry, Rueil-Malmaison, 18–21 Sept, pp 379–408

    Google Scholar 

  • Teichmüller M (1989) The genesis of coal from the viewpoint of coal petrology. Int J Coal Geol 12:1–87

    Article  Google Scholar 

  • Teichmüller M, Teichmüller R (1982) Fundamentals of coal petrology. In: Stach E, Mackowsky M-T, Teichmüller M, Taylor GH, Chandra D, Teichmüller R (eds) Stach’s textbook of coal petrology. Gebrüder Borntraeger, Stuttgart: 5–108

    Google Scholar 

  • Tissot B, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • U.S. Environmental Protection Agency (1997) Mercury study report to Congress-, v. 1, Executive summary: Office of Air Quality, Planning, and Standards, and Office of Research and Development, Washington, DC, EPA-452/R-97-003

    Google Scholar 

  • U.S. Environmental Protection Agency (1999) Report to Congress–wastes from the combustion of fossil fuels. Office of Solid Waste and Emergency Response, Washington, DC, EPA 530-S-99-010, Executive Summary, 1 and 2

    Google Scholar 

  • U.S. Environmental Protection Agency (2004) Acid rain program, 2003 progress report: Washington, D.C., EPA 430-R-04-009, 17 p.

    Google Scholar 

  • U.S. Environmental Protection Agency (2015) Final rule: disposal of coal combustion residuals from electric utilities. http://www.epa.gov/coalash/coal-ash-rule. Accessed Jan 2016

  • U.S. Environmental Protection Agency (EPA) (2016a) Mercury and air toxics standards. http://www3.epa.gov/mats/. Accessed Jan 2016

  • U.S. Environmental Protection Agency (EPA) (2016b) Climate change. http://www3.epa.gov/climatechange/. Accessed Jan 2016

  • U.S. Environmental Protection Agency (US EPA) (1998) Study of hazardous air pollutant emissions from electric utility steam generating units–Final report. U. S. Environmental Protection Agency, Office of Air Quality, Research Triangle Park, North Carolina, EPA-453/R-98-004a, volumes 1 and 2, varied pagination

    Google Scholar 

  • United Nations (1998) Kyoto protocol to the United Nations framework convention on climate change, Dec. 10, 1997, U.N. Doc FCCC/CP/1997/7/Add.1, 37 I.L.M. 22. UN, Geneva

    Google Scholar 

  • United Nations Economic Commission for Europe (UN-ECE) (1998) International classification of in-seam coals. UN Economic Commission for Europe, Committee on Sustainable Energy, Geneva

    Google Scholar 

  • Vassilev SV, Vassileva CG (1996) Occurrence, abundance and origin of minerals in coals and coal ashes. Fuel Process Technol 48(2):85–106

    Article  Google Scholar 

  • Vassilev SV, Eskenazy GM, Vassileva CG (2000) Contents, modes of occurrence and origin of chlorine and bromine in coal. Fuel 79(8):903–921

    Article  Google Scholar 

  • Ward CR (1989) Minerals in bituminous coals of the Sydney basin (Australia) and the Illinois basin (U.S.A.) Int J Coal Geol 13:455–479

    Article  Google Scholar 

  • Ward CR (2002) Analysis and significance of mineral matter in coal seams. Int J Coal Geol 50(1):135–168

    Article  Google Scholar 

  • Wilks KR, Mastalerz M, Bustin RM, Ross JV (1993) The role of shear strain in the graphitization of a high-volatile bituminous and an anthracitic coal. Int J Coal Geol 22:247–277

    Google Scholar 

  • Yu Z, Beilman DW, Frolking S, MacDonald GM, Roulet NT, Camill P, Charman DJ (2011) Peatlands and their role in the global carbon cycle. EOS Trans Am Geophys Union 92(12):97–98

    Article  Google Scholar 

  • Zimmerman RE (1979) Evaluation and testing the coking properties of coal. Miller Freeman Publications, San Francisco

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen F. Greb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Greb, S.F., Eble, C.F., Hower, J.C. (2017). Coal. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_153-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_153-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics