Encyclopedia of Geochemistry

Editors: William M. White

Paleotemperatures

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_131-1

Definition

A paleotemperature is the temperature of a location, either on land or in the ocean, at a specific time in the geologic past. Scientists use paleothermometers to reconstruct past temperature records from archives – natural features of the Earth that preserve clues about past climate and environmental change. Examples of archives include marine and lacustrine sediment, glacial ice, and corals. Paleothermometers are often referred to as temperature proxies , which are measurable physical, geological, geochemical, or biological characteristics that get preserved in archives, standing in for instrumental measurements. Each proxy is associated with a calibration that transforms the proxy measurements into the parameter of interest, which in this case is temperature.

Scientists rely on proxy measurements from archives because direct observations of temperature extend back only as far as the middle of the nineteenth century (Smith et al. 2008). Direct temperature measurements of...

This is a preview of subscription content, log in to check access

References

  1. Allen KA, Hönisch B, Eggins M, Haynes LL, Rosenthal Y, Yu J (2016) Trace element proxies for surface ocean conditions: a synthesis of culture calibrations with planktonic foraminifera. Geochim Cosmochim Acta 193:197–221CrossRefGoogle Scholar
  2. Alpert AE, Cohen AL, Oppo D, DeCarlo TM, Gove J, Young C (2016) Comparison of equatorial Pacific sea surface temperature variability and trends with Sr/Ca records from multiple corals. Paleoceanography 31:252–265CrossRefGoogle Scholar
  3. Anand P, Elderfield H, Conte MH (2003) Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography 18:1050CrossRefGoogle Scholar
  4. Bemis BE, Spero HJ, Bijma J, Lea DW (1998) Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13:150–160CrossRefGoogle Scholar
  5. Bijl PK, Schouten S, Sluijs A, Reichart G, Zachos JC, Brinkhuis H (2009) Early Palaeogene temperature evolution of the southwest Pacific Ocean. Nature 461:776–779CrossRefGoogle Scholar
  6. Brassell SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133CrossRefGoogle Scholar
  7. Brown SJ, Elderfield H (1996) Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: evidence of shallow Mg-dependent dissolution. Paleoceanography 11:543–551CrossRefGoogle Scholar
  8. Bryan SP, Marchitto TM (2008) Mg/Ca–temperature proxy in benthic foraminifera: new calibrations from the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography 23:PA2220CrossRefGoogle Scholar
  9. Came R, Eiler J, Veizer J, Azmy K, Brand U, Weidman C (2007) Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. Nature 449:198–201CrossRefGoogle Scholar
  10. Cohen AL, Gaetani GA, Lundalv T, Corliss BH, George RY (2006) Compositional variability in a cold-water scleractinian, Lophelia pertusa: new insights into “vital effects”. Geochem Geophys Geosyst 7:Q12004CrossRefGoogle Scholar
  11. Conte MH, Sicre M, Rühlemann C, Weber JC, Schulte S, Schulz-Bull D, Blanz T (2006) Global temperature calibration of the alkenone unsaturation index (UK′ 37) in surface waters and comparison with surface sediments. Geochem Geophys Geosyst 7:Q02005CrossRefGoogle Scholar
  12. Cronin TM, Dwyer GS, Baker PA, Rodriguez-Lazaro J, DeMartino DM (2000) Orbital and suborbital variability in deep North Atlantic bottom water temperature obtained from Mg/Ca ratios in the ostracode Krithe. Palaeogeogr Palaeoclimatol Palaeoecol 162:45–57CrossRefGoogle Scholar
  13. Cuffey KM, Vimeux F (2001) Covariation of carbon dioxide and temperature from the Vostok ice core after deuterium-excess correction. Nature 412:523–527CrossRefGoogle Scholar
  14. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjoornsdottie AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220CrossRefGoogle Scholar
  15. DeCarlo TM, Gaetani GA, Cohen AL, Foster GL, Alpert AE, Stewart JA (2016) Coral Sr-U thermometry. Paleoceanography 31:626–638CrossRefGoogle Scholar
  16. Dekens PS, Lea DW, Pak DK, Spero HJ (2002) Core top calibration of Mg/Ca in tropical foraminifera: refining paleotemperature estimation. Geochem Geophys Geosyst 3:1–29CrossRefGoogle Scholar
  17. Duplessy JC, Lalou C, Vinot AC (1970) Differential isotopic fractionation in benthic foraminifera and paleotemperatures reassessed. Science 168:250–251CrossRefGoogle Scholar
  18. Dwyer GS, Cronin TM, Baker PA (2002) Trace elements in ostracodes. In: Holmes JA, Chivas AR (eds) Applications of the Ostracoda to Quaternary research. American Geophysical Union, Washington, DC, pp 205–225CrossRefGoogle Scholar
  19. Elderfield H, Ganssen G (2000) Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405:442–445CrossRefGoogle Scholar
  20. Elderfield H, Yu J, Anand P, Kiefer T, Nyland B (2006) Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis. Earth Planet Sci Lett 250:633–649CrossRefGoogle Scholar
  21. Elderfield H, Ferretti P, Greaves M, Crowhurst S, McCave IN, Hodell D, Piotrowski AM (2012) Evolution of ocean temperature and ice volume through the Mid-Pleistocene climate transition. Science 337:704–709CrossRefGoogle Scholar
  22. Emiliani C (1955) Pleistocene temperatures. J Geol 63:538–578CrossRefGoogle Scholar
  23. EPICA community members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628CrossRefGoogle Scholar
  24. Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1325CrossRefGoogle Scholar
  25. Erez J, Luz B (1983) Experimental paleotemperature equation for planktonic foraminifera. Geochim Cosmochim Acta 47:1025–1031CrossRefGoogle Scholar
  26. Felis T, Suzuki A, Kuhnert H, Dima M, Lohmann G, Kawahata H (2009) Subtropical coral reveals abrupt early-twentieth-century freshening in the western North Pacific Ocean. Geology 37:527–530CrossRefGoogle Scholar
  27. Ford HL, Ravelo AC, Polissar PJ (2015) Reduced El Niño-Southern Oscillation during the Last Glacial Maximum. Science 347:255–258CrossRefGoogle Scholar
  28. Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble E, Schrag D, Eiler J (2006) 13C-18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456CrossRefGoogle Scholar
  29. Ghosh P, Eiler J, Campana S, Feeney R (2007) Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochim Cosmochim Acta 71:2736–2744CrossRefGoogle Scholar
  30. Goodkin NF, Hughen KA, Cohen AL, Smith SR (2005) Record of Little Ice Age sea surface temperatures at Bermuda using a growth-dependent calibration of coral Sr/Ca. Paleoceanography 20:PA4016CrossRefGoogle Scholar
  31. Greenland Ice-core Project (GRIP) Members (1993) Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364:203–207CrossRefGoogle Scholar
  32. Grootes PM, Stuiver M, White JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554CrossRefGoogle Scholar
  33. Guo W, Mosenfelder JL, Goddard WA, Eiler J (2009) Isotope fractionations associated with phosphoric acid digestion of carbonate minerals: insights from first principles theoretical modeling and clumped isotope measurements. Geochim Cosmochim Acta 73:7203–7225CrossRefGoogle Scholar
  34. Herbert TD (2014) 8.15: alkenone paleotemperature determinations. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 399–433CrossRefGoogle Scholar
  35. Hereid KA, Quinn TM, Taylor FW, Shen CC, Edwards RL, Cheng H (2013) Coral record of reduced El Nino activity in the early 15th to middle 17th centuries. Geology 41:51–54CrossRefGoogle Scholar
  36. Hertzberg JE, Schmidt MW, Bianchi TS, Smith RW, Shields MR, Marcantonio F (2016) Comparison of eastern tropical Pacific TEX86 and Globigerinoides ruber Mg/Ca derived sea surface temperatures: insights from the Holocene and Last Glacial Maximum. Earth Planet Sci Lett 434:320–332CrossRefGoogle Scholar
  37. Hertzberg JE, Schmidt MW (2013) Refining Globigerinoides ruber Mg/Ca paleothermometry in the Atlantic Ocean. Earth Planet Sci Lett 383:123–133CrossRefGoogle Scholar
  38. Hönisch B, Allen KA, Lea DW, Spero HJ, Eggins SM, Arbuszewski J, deMenocal P, Rosenthal Y, Russell AD, Elderfield H (2013) The influence of salinity on Mg/Ca in planktic foraminifers – evidence from cultures, core-top sediments and complimentary δ18O. Geochim Cosmochim Acta 121:196–213CrossRefGoogle Scholar
  39. Howard WR, Prell WL (1992) Late quaternary surface circulation of the southern Indian Ocean and its relationship to orbital variations. Paleoceanography 7:79–117CrossRefGoogle Scholar
  40. Hutson WH (1980) The Agulhas current during the late Pleistocene: analysis of modern faunal analogs. Science 207:64–66CrossRefGoogle Scholar
  41. Imbrie J, Kipp NG (1971) A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. In: Turekian KK (ed) The Late Cenozoic glacial ages. Yale University Press, Connecticut, pp 71–181Google Scholar
  42. Kim JH, van der Meer J, Schouten S, Helmke P, Willmott V, Sangiorgi F, Koc N, Hopmans E, Sinninghe Damsté JS (2010) New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta 74:4639–4654CrossRefGoogle Scholar
  43. Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475CrossRefGoogle Scholar
  44. Kucera M (2007) Planktonic foraminifera as tracers of past oceanic environments, Chapter 6. In: Hillaire-Marcel C, de Vernal A (eds) Developments in marine geology. Elsevier, Oxford, pp 213–262Google Scholar
  45. Landais A, Caillon N, Grachev A, Barnola JM, Chapellaz J, Jouzel J, Masson-Delmotte V, Leuenberger M (2004) Quantification of rapid temperature change during DO event 12 and phasing with methane inferred from air isotopic measurements. Earth Planet Sci Lett 225:221–232CrossRefGoogle Scholar
  46. Lea DW, Mashiotta TA, Spero HJ (1999) Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochim Cosmochim Acta 63:2369–2379CrossRefGoogle Scholar
  47. Lea DW, Pak DK, Spero HJ (2000) Climate impact of Late Quaternary Equatorial Pacific sea surface temperature variations. Science 289:1719–1724CrossRefGoogle Scholar
  48. Lear CH, Rosenthal Y, Slowey N (2002) Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration. Geochim Cosmochim Acta 66:3375–3387CrossRefGoogle Scholar
  49. Marchitto TM, Curry WB, Lynch-Stieglitz J, Bryan SP, Cobb KM, Lund DC (2014) Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera. Geochim Cosmochim Acta 130:1–11CrossRefGoogle Scholar
  50. Masson-Delmotte V, Dreyfus G, Braconnot P, Johnsen S, Jouzel J, Kageyama M, Landais A, Loutre M-F, Nouet J, Parrenin F, Raynaud D, Stenni B, Tuenter E (2006) Past temperature reconstructions from deep ice cores: relevance for future climate change. Clim Past 2:145–165CrossRefGoogle Scholar
  51. Murray J (1897) On the distribution of the pelagic foraminifera at the surface and on the floor of the ocean. Nat Sci (Ecology) 11:17–27Google Scholar
  52. North Greenland Ice Core Project members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151CrossRefGoogle Scholar
  53. Nürnberg D, Bijma J, Hemleben C (1996) Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochim Cosmochim Acta 60:803–814CrossRefGoogle Scholar
  54. Ohkouchi N, Eglinton TI, Keigwin LD, Hayes JM (2002) Spatial and temporal offsets between proxy records in a sediment drift. Science 298:1224–1227CrossRefGoogle Scholar
  55. Ortiz JD, Mix AC (1997) Comparison of Imbrie-Kipp transfer function and modern analog temperature estimates using sediment trap and core top foraminiferal faunas. Paleoceanography 5:43–54Google Scholar
  56. Parker AO, Schmidt MW, Chang P (2015) Tropical North Atlantic subsurface warming events as a fingerprint for AMOC variability during Marine Isotope Stage 3. Paleoceanography 30:1425–1436CrossRefGoogle Scholar
  57. Passey BH, Levin NE, Cerling TE, Brown FH, Eiler JM (2010) High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc Natl Acad Sci 107:11245–11249CrossRefGoogle Scholar
  58. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, David M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  59. Powers LA, Werne JP, Johnson TC, Hopmans EC, Sinninghe Damste JS, Schouten S (2004) Crenarchaeotal membrane lipids in lake sediments: a new paleotemperature proxy for continental paleoclimate reconstruction? Geology 32:613–616CrossRefGoogle Scholar
  60. Prahl FG, Muehlhausen LA, Zahnle DL (1988) Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim Cosmochim Acta 52:2303–2310CrossRefGoogle Scholar
  61. Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature 330:367–369CrossRefGoogle Scholar
  62. Ravelo AC, Hillaire-Marcel C (2007) The use of oxygen and carbon isotopes of foraminifera in paleoceanography, Chapter 18. In: Hillaire-Marcel C, de Vernal A (eds) Developments in marine geology. Elsevier, Oxford, pp 735–764Google Scholar
  63. Regenberg M, Regenberg A, Garbe-Schönberg D, Lea DW (2014) Global dissolution effects on planktonic foraminiferal Mg/Ca ratios controlled by the calcite-saturation state of bottom waters. Paleoceanography 29:127–142CrossRefGoogle Scholar
  64. Rosenthal Y, Boyle EA, Slowey N (1997) Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: prospects for thermocline paleoceanography. Geochim Cosmochim Acta 61:3633–3643CrossRefGoogle Scholar
  65. Rosenthal Y, Lohmann GP (2002) Accurate estimation of sea-surface temperatures using dissolution corrected calibrations for Mg/Ca paleothermometry. Paleoceanography 17:1044CrossRefGoogle Scholar
  66. Russell AD, Hönisch B, Spero HJ, Lea DW (2004) Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochim Cosmochim Acta 68:4347–4361CrossRefGoogle Scholar
  67. Schauble E, Ghosh P, Eiler J (2006) Preferential formation of 13C-18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim Cosmochim Acta 70:1439–1456CrossRefGoogle Scholar
  68. Schmidt MW, Vautravers MJ, Spero HJ (2006) Rapid subtropical North Atlantic salinity oscillations across Dansgaard-Oeschger cycles. Nature 443:561–564CrossRefGoogle Scholar
  69. Schmidt MW, Lynch-Stieglitz J (2011) Florida Straits deglacial temperature and salinity change: implications for tropical hydrologic cycle variability during the Younger Dryas. Paleoceanography 26:PA4205Google Scholar
  70. Schmidt MW, Chang P, Hertzberg JE, Them TR, Ji L, Otto-Bliesner BL (2012) Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures. Proc Natl Acad Sci 109:14348–14352CrossRefGoogle Scholar
  71. Schouten S, Hopmans EC, Schefuß E, Sinninghe Damsté JS (2002) Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274CrossRefGoogle Scholar
  72. Severinghaus JP, Sowers T, Brook EJ, Alley RB, Bender ML (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391:141–146CrossRefGoogle Scholar
  73. Severinghaus JP, Brook E (1999) Simultaneous tropical-Arctic abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286:930–934CrossRefGoogle Scholar
  74. Shackleton NJ (1974) Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. In: Labeyrie J (ed) Les méthodes quantitatives d’étude des variations du climat au cours du Pléistocene. Colloques Int. duc. N. R. S, Paris, pp 203–209Google Scholar
  75. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis. J Climate 21:2283–2296CrossRefGoogle Scholar
  76. Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500CrossRefGoogle Scholar
  77. Thiagarajan N, Adkins J, Eiler J (2011) Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects. Geochim Cosmochim Acta 75:4416–4425CrossRefGoogle Scholar
  78. Tierney JE, Russell JM, Huang Y, Sinninghe Damste JS, Hopmans EC, Cohen AC (2008) Northern Hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322:252–255CrossRefGoogle Scholar
  79. Tierney JE, Russell JM, Eggermont H, Hopmans EC, Verschuren D, Sinninghe Damste JS (2010) Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments. Geochim Cosmochim Acta 74:4902–4918CrossRefGoogle Scholar
  80. Tierney JE (2014) Biomarker-based inferences of past climate: the TEX86 paleotemperature proxy. In: Turekian KK, Holland HD (eds) Treatise on geochemistry, Organic geochemistry, vol 12, 2nd edn. Elsevier, Oxford, pp 379–393CrossRefGoogle Scholar
  81. Tierney JE, Tingley MP (2015) A TEX86 surface sediment database and extended Bayesian calibration. Sci Data 2:150029CrossRefGoogle Scholar
  82. Tripati A, Eagle R, Thiagarajan N, Gagnon A, Bauch H, Halloran P, Eiler J (2010) 13C-18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths. Geochim Cosmochim Acta 74:5697–5717CrossRefGoogle Scholar
  83. Tripati A, Sahany S, Pittman D, Eagle RA, Neelin JD, Mitchell JL, Beaufort L (2014) Modern and glacial tropical snowlines controlled by sea surface temperature and atmospheric mixing. Nat Geosci 7:205–209CrossRefGoogle Scholar
  84. WAIS Divide Project Members (2013) Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 500:440–444CrossRefGoogle Scholar
  85. Wefer G, Berger WH, Bijma J, Fischer G (1999) Clues to ocean history: a brief overview of proxies. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples from the South Atlantic. Springer, Berlin, pp 1–68CrossRefGoogle Scholar
  86. Wuchter C, Shouten S, Coolen MJL, Sinninghe Damsté JS (2004) Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: implications for TEX86 paleothermometry. Paleoceanography 19:PA4028CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Marine SciencesUniversity of ConnecticutGrotonUSA
  2. 2.Department of Ocean, Earth and Atmospheric SciencesOld Dominion UniversityNorfolkUSA