Skip to main content

Fluorine

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

FormalPara Element Data

Atomic symbol: F

Atomic number: 9

Atomic weight: 18.998 g/mol

Isotopes and abundances: 19F 100 %

1 Atm melting point: −219.67 °C

1 Atm boiling point: −188.11 °C

Common valences: −1

Ionic radii: 130 (III), 131 (IV), and 133 (VI), in pm (coordination number)

Pauling electronegativity: 3.98

First ionization potential: 17.4428 eV

Chondritic (CI) abundance: 60.7 μg.g−1

Silicate earth abundance: two estimates – 18 ± 8 and 25 ± 10 μg.g−1

Continental crust abundance ~ 550 μg.g−1

Oceanic crust abundance 130 ~ 1000 (est. 400) μg.g−1

Seawater abundance: 1.3 μg.g−1

Core abundance: considered as 0

Properties

In its elemental form, fluorine exists as a diatomic molecule of highly toxic, corrosive, pale yellow gas with a pungent smell in ambient conditions. As the most electronegative element, fluorine is reactive and commonly found in nature as ionic compounds bonded to metal cations or hydrogen. Fluorine can dissolve into solution forming F ions.

History and Use

...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agricola, G., 1556. De re metallica (translated version, Hoover HC, and Hoover LH (1912) De re metallica. Dover: New York).

    Google Scholar 

  • Akiniwa, K., 1997. Re-examination of acute toxicity of fluoride. Fluoride, 30, 89–104.

    Google Scholar 

  • Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., Gilu-cis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locutura, J., Marsina, K., Mazreku, A., O’Connor, P. J., Olsson, S. Å., Ottesen, R.-T., Petersell, V., Plant, J. A., Reeder, S., Salpeteur, I., Sandström, H., Siewers, U., Steenfelt, A., and Tarvainen, T., 2005. Geochemical atlas of Europe. In Salminen, R. (ed.), Part 1: Background Information, Methodology and Maps. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Beyer, C., Klemme, S., Wiedenbeck, M., Stracke, A., and Vollmer, C., 2012. Fluorine in nominally fluorine-free mantle minerals: experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes. Earth and Planetary Science Letters, 337, 1–9.

    Article  Google Scholar 

  • Clayton, D., 2003. Handbook of Isotopes in Cosmos, Hydrogen to Gallium. Cambridge: Cambridge University Press.

    Google Scholar 

  • Dalou, C., Le Losq, C., Mysen, B. O., and Cody, G. D., 2015. Solubility and solution mechanisms of chlorine and fluorine in aluminosilicate melts at high pressure and high temperature. American Mineralogist, 100, 2272–2283. doi:10.2138/am-2015-5201.

    Article  Google Scholar 

  • Enax, J., Prymak, O., Raabe, D., and Epple, M., 2012. Structure, composition, and mechanical properties of shark teeth. Journal of Structural Biology, 178, 290–299.

    Article  Google Scholar 

  • Forestini, M., Goriely, S., and Jorissen, A., 1992. Fluorine production in thermal pulses on the asymptotic giant branch. Astronomy and Astrophysics, 261, 157–163.

    Google Scholar 

  • Hanley and Koga, (in prep.) Halogens in terrestrial and cosmic geochemical systems: abundances, geochemical behaviors and analytical methods. In Harlov, D. (ed), The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Berlin/Heidelberg: Springer-Verlag.

    Google Scholar 

  • Klemme, S., 2004. Evidence for fluoride melts in Earth’s mantle formed by liquid immiscibility. Geology, 32, 441.

    Article  Google Scholar 

  • Lodders, K., Palme, H., and Gail, H. P., 2009. Abundances of the elements in the solar system. In Astronomy and Astrophysics. Berlin: Springer, pp. 560–630.

    Google Scholar 

  • McDonough, W. F., 2003. Compositional model for the Earth’s Core. In Holland, H. D., and Turrekian, K. K. (eds.), Treatise on Geochemistry. Amsterdam: Elsevier, Vol. 2, pp. 547–568.

    Chapter  Google Scholar 

  • Moissan, H., 1886. Sur la décomposition de l’acide fluorhydrique par un courant électrique. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 103, 202–205.

    Google Scholar 

  • Mungall, J. E., and Brenan, J. M., 2003. Experimental evidence for the chalcophile behavior of the halogens. The Canadian Mineralogist, 41, 207–220.

    Article  Google Scholar 

  • Rosenthal, Y., Boyle, E. A., and Slowey, N., 1997. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: prospects for thermocline paleoceanography. Geochimica et Cosmochimica Acta, 61, 3633–3643.

    Article  Google Scholar 

  • Rudnick, R. L., and Gao, S., 2003. Composition of the Continental Crust. In Holland, H. D., and Turekian, K. K. (eds.), Treatise on Geochemistry. Amsterdam: Elsevier, Vol. 3, pp. 1–64.

    Chapter  Google Scholar 

  • Stix, J., Layne, G. D., and Spell, T. L., 1995. The behavior of light lithophile and halogen elements in felsic magma: geochemistry of the post-caldera Valles Rhyolites, Jemez Mountains Volcanic Field, New Mexico. Journal of Volcanology and Geothermal Research, 67, 61–77.

    Article  Google Scholar 

  • Symonds, R. B., Rose, W. I., Bluth, G. J., and Gerlach, T. M., 1994. Volcanic-gas studies; methods, results, and applications. Reviews in Mineralogy and Geochemistry, 30(1), 1–66.

    Google Scholar 

  • Taylor, G. J., 2013. The bulk composition of Mars. Chemie der Erde-Geochemistry, 73, 401–420.

    Article  Google Scholar 

  • Teague, A. J., Hanley, J., Seward, T. M., and Reutten, F., 2011. Trace-element distribution between coexisting aqueous fumarole condensates and natrocarbonatite lavas at Oldoinyo Lengai volcano, Tanzania. Geological Society of America Special Papers, 478, 159–172.

    Article  Google Scholar 

  • Wasson, J. T., and Kallemeyn, G. W., 1988. Compositions of chondrites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 325, 535–544.

    Article  Google Scholar 

  • Woosley, S. E., and Haxton, W. C., 1988. Supernova neutrinos, neutral currents and the origin of fluorine. Nature, 334, 45–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenneth T. Koga or Estelle F. Rose-Koga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Koga, K.T., Rose-Koga, E.F. (2016). Fluorine. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_102-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_102-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics