Skip to main content

Cementless Total Knee Arthroplasty

  • Reference work entry
  • First Online:
Minimally Invasive Surgery in Orthopedics

Abstract

The cementless total knee has gained increasing interest as an alternative fixation to cemented implants for younger, more active patient populations. Unlike cemented implants that rely on the use of cement to make small corrections in alignment and positioning, the cementless implant is dependent on optimal implant design and precise surgical technique to achieve comparable clinical outcomes. The key to its success has been a combination of appropriate patient selection, advanced implant coatings, and use of autogenous bone chips as a form of biologic cement. Careful selection of porous coating composites and pore sizes have lead to surfaces that allow optimal bone ingrowth while minimizing stress shielding or excessive bone loss during revision surgery. The use of bone grafting serves as a biologic alternative for implant fixation that avoids some of the complications encountered with methylmethacrylate. The cementless knee system may be performed using either a gap balancing or measured resection technique and can accommodate either PCL resection or preservation. Particular attention must be paid to making precise bone cuts as cement cannot be used to correct for gaps or surface incongruity. Early clinical trials have shown comparable clinical outcomes and survival to cemented implants with up to 13.6 years of follow-up. Further advancements in implant design and composite materials will hopefully lead to greater implant longevity and broaden the indications for cementless knee arthroplasty use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hungerford DS, Krackow KA. Total joint arthroplasty of the knee. Clin Orthop Relat Res. 1985;192:23–33.

    PubMed  Google Scholar 

  2. Moreland JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop Relat Res. 1988;226:49–64.

    PubMed  Google Scholar 

  3. Ranawat CS, et al. Retrieval analysis of porous-coated components for total knee arthroplasty. A report of two cases. Clin Orthop Relat Res. 1986;209:244–8.

    PubMed  Google Scholar 

  4. Insall JN, et al. The total condylar knee prosthesis in gonarthrosis. A five to nine-year follow-up of the first one hundred consecutive replacements. J Bone Joint Surg Am. 1983;65(5):619–28.

    CAS  PubMed  Google Scholar 

  5. Duffy GP, Berry DJ, Rand JA. Cement versus cementless fixation in total knee arthroplasty. Clin Orthop Relat Res. 1998;356:66–72.

    Article  PubMed  Google Scholar 

  6. Bayley JC, et al. Failure of the metal-backed patellar component after total knee replacement. J Bone Joint Surg Am. 1988;70(5):668–74.

    CAS  PubMed  Google Scholar 

  7. Lombardi Jr AV, et al. Fracture/dissociation of the polyethylene in metal-backed patellar components in total knee arthroplasty. J Bone Joint Surg Am. 1988;70(5):675–9.

    PubMed  Google Scholar 

  8. Davies JP, et al. The effect of centrifuging bone cement. J Bone Joint Surg Br. 1989;71(1):39–42.

    CAS  PubMed  Google Scholar 

  9. Miller J. Fixation in total knee arthroplasty. In: Insall J, editor. Surgery of the knee. New York: Churchill Livingstone; 1984. p. 717–28.

    Google Scholar 

  10. Kurtz SM, et al. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res. 2009;467(10):2606–12.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cross MJ, Parish EN. A hydroxyapatite-coated total knee replacement: prospective analysis of 1000 patients. J Bone Joint Surg Br. 2005;87(8):1073–6.

    Article  CAS  PubMed  Google Scholar 

  12. Watanabe H, Akizuki S, Takizawa T. Survival analysis of a cementless, cruciate-retaining total knee arthroplasty. Clinical and radiographic assessment 10 to 13 years after surgery. J Bone Joint Surg Br. 2004;86(6):824–9.

    Article  CAS  PubMed  Google Scholar 

  13. Whiteside LA. Cementless total knee replacement. Nine- to 11-year results and 10-year survivorship analysis. Clin Orthop Relat Res. 1994;309:185–92.

    PubMed  Google Scholar 

  14. Naudie DD, et al. Wear and osteolysis around total knee arthroplasty. J Am Acad Orthop Surg. 2007;15(1):53–64.

    Article  PubMed  Google Scholar 

  15. Jones LC, Hungerford DS. Cement disease. Clin Orthop Relat Res. 1987;225:192–206.

    PubMed  Google Scholar 

  16. Bobyn JD, et al. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res. 1980;150:263–70.

    PubMed  Google Scholar 

  17. Frenkel SR, et al. Bone response to a novel highly porous surface in a canine implantable chamber. J Biomed Mater Res B Appl Biomater. 2004;71(2):387–91.

    Article  PubMed  Google Scholar 

  18. Bloebaum RD, et al. Bilateral tibial components of different cementless designs and materials. Microradiographic, backscattered imaging, and histologic analysis. Clin Orthop Relat Res. 1991;268:179–87.

    PubMed  Google Scholar 

  19. Hofmann A. Response of human cancellous bone to identically structured commercially pure titanium and cobalt chromium alloy porous-coated cylinders. Clin Mater. 1993;14(2):101–15.

    Article  CAS  Google Scholar 

  20. Bloebaum RD, et al. Analysis of the bone surface area in resected tibia. Implications in tibial component subsidence and fixation. Clin Orthop Relat Res. 1994;309:2–10.

    PubMed  Google Scholar 

  21. Hofmann AA, et al. Microscopic analysis of autograft bone applied at the interface of porous-coated devices in human cancellous bone. Int Orthop. 1992;16(4):349–58.

    Article  CAS  PubMed  Google Scholar 

  22. Bloebaum RD, Rubman MH, Hofmann AA. Bone ingrowth into porous-coated tibial components implanted with autograft bone chips. Analysis of ten consecutively retrieved implants. J Arthroplasty. 1992;7(4):483–93.

    Article  CAS  PubMed  Google Scholar 

  23. Dai Y, et al. Anatomic tibial component design can increase tibial coverage and rotational alignment accuracy: a comparison of six contemporary designs. Knee Surg Sports Traumatol Arthrosc. 2014;22(12):2911–23.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Clary C, et al. Tibial base design and patient morphology affecting tibial coverage and rotational alignment after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2014;22(12):3012–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bhimji S, Meneghini RM. Micromotion of cementless tibial baseplates: keels with adjuvant pegs offer more stability than pegs alone. J Arthroplasty. 2014;29(7):1503–6.

    Article  PubMed  Google Scholar 

  26. Ferguson RP, Friederichs MG, Hofmann AA. Comparison of screw and screwless fixation in cementless total knee arthroplasty. Orthopedics. 2008;31(2):127.

    Article  PubMed  Google Scholar 

  27. Berger RA, et al. Long-term followup of the Miller-Galante total knee replacement. Clin Orthop Relat Res. 2001;388:58–67.

    Article  PubMed  Google Scholar 

  28. Evanich CJ, et al. 6- to 10-year experience using countersunk metal-backed patellas. J Arthroplasty. 1997;12(2):149–54.

    Article  CAS  PubMed  Google Scholar 

  29. Kraay MJ, et al. Outcome of metal-backed cementless patellar components: the effect of implant design. Clin Orthop Relat Res. 2001;392:239–44.

    Article  PubMed  Google Scholar 

  30. Moreland JR, Bassett LW, Hanker GJ. Radiographic analysis of the axial alignment of the lower extremity. J Bone Joint Surg Am. 1987;69(5):745–9.

    CAS  PubMed  Google Scholar 

  31. Krakow K. The technique of total knee arthroplasty. St. Louis: C.V. Mosby; 1990. p. 118–37.

    Google Scholar 

  32. Bai B, et al. Effect of posterior cut angle on tibial component loading. J Arthroplasty. 2000;15(7):916–20.

    Article  CAS  PubMed  Google Scholar 

  33. Hofmann AA, Bachus KN, Wyatt RW. Effect of the tibial cut on subsidence following total knee arthroplasty. Clin Orthop Relat Res. 1991;269:63–9.

    PubMed  Google Scholar 

  34. Hofmann AA, et al. Posterior stabilization in total knee arthroplasty with use of an ultracongruent polyethylene insert. J Arthroplasty. 2000;15(5):576–83.

    Article  CAS  PubMed  Google Scholar 

  35. Hofmann AA, Plaster RL, Murdock LE. Subvastus (Southern) approach for primary total knee arthroplasty. Clin Orthop Relat Res. 1991;269:70–7.

    PubMed  Google Scholar 

  36. Rossi R, et al. Muscle damage during minimally invasive surgical total knee arthroplasty traditional versus optimized subvastus approach. Knee. 2011;18(4):254–8.

    Article  PubMed  Google Scholar 

  37. Krause WR, et al. Temperature elevations in orthopaedic cutting operations. J Biomech. 1982;15(4):267–75.

    Article  CAS  PubMed  Google Scholar 

  38. McCaskie AW, et al. Randomised, prospective study comparing cemented and cementless total knee replacement: results of press-fit condylar total knee replacement at five years. J Bone Joint Surg Br. 1998;80(6):971–5.

    Article  CAS  PubMed  Google Scholar 

  39. Park JW, Kim YH. Simultaneous cemented and cementless total knee replacement in the same patients: a prospective comparison of long-term outcomes using an identical design of NexGen prosthesis. J Bone Joint Surg Br. 2011;93(11):1479–86.

    Article  PubMed  Google Scholar 

  40. Hofmann AA, et al. Ten- to 14-year clinical followup of the cementless Natural Knee system. Clin Orthop Relat Res. 2001;388:85–94.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Lampley, A.J., Kleeman, L., Bolognesi, M., Hofmann, A. (2016). Cementless Total Knee Arthroplasty. In: Scuderi, G., Tria, A. (eds) Minimally Invasive Surgery in Orthopedics. Springer, Cham. https://doi.org/10.1007/978-3-319-34109-5_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34109-5_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34107-1

  • Online ISBN: 978-3-319-34109-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics