Abstract
Gastrointestinal stromal tumors (GISTs) are rare tumors accounting 10–15 new cases/year per million individuals and only represent 2–3% to all gastrointestinal malignancies. They usually arise from the stomach, less frequently from the small bowel, rectum, and esophagus. The hallmark of GISTs is the presence of activating mutations in KIT or platelet-derived growth factor-alpha (PDGFRA) genes, which are considered key drivers in the molecular pathogenesis and that represent important predictive factors. Before the angiogenic inhibition era, GIST was found to be resistant to cytotoxic chemotherapeutic agents. The introduction of small molecules able to inhibit angiogenesis and tumor growth has utterly changed the clinical history of this rare tumor. GISTs have represented for years a model for anti-angiogenic treatment in solid cancer. Tyrosine kinase inhibitors against pro-angiogenic targets, such as imatinib, sunitinib, and regorafenib, are currently available in GIST treatment. One of the main concerns with this molecular therapy is acquired resistance due to a huge variety of factors, including activation of parallel angiogenic pathways. A second important aspect in learning curve of tyrosine kinase inhibitor mechanism of action is the different toxicity profile compared to cytotoxic chemotherapy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adenis A, Baly J-Y, Bui-Nguyen B et al (2014) Masitinib in advanced gastrointestinal stromal tumor (GIST) after failure of imatinib: a randomized controlled open-label trial. Ann Oncol 25(9):1762–1769
Agrawal MD, Pinho DF, Kulkarni NM et al (2014) Oncologic applications of dual-energy CT in the abdomen. Radiogr Rev Publ Radiol Soc N Am Inc 34(3):589–612
Antonescu CR, Besmer P, Guo T et al (2005) Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 11(11):4182–4190
Bauer S, Duensing A, Demetri GD et al (2007) KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene 26(54):7560–7568
Ben-Ami E, Barysauskas CM, von Mehren M et al (2016) Long-term follow-up results of the multicenter phase II trial of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of standard tyrosine kinase inhibitor therapy. Ann Oncol 27(9):1794–1799
Bernard Lyon CI, Blay JY, Shen L et al (2015) Nilotinib versus imatinib as first-line therapy for patients with unresectable or metastatic gastrointestinal stromal tumours (ENESTg1): a randomised phase 3 trial. Lancet Oncol 16(16):550–560
Bilen MA, Patel A, Hess K et al (2016) Association between new-onset hypothyroidism and clinical response in patients treated with tyrosine kinase inhibitor therapy in phase I clinical trials. Cancer Chemother Pharmacol 78(1):167–171
Blanke CD, Demetri G, von Mehren M et al (2008) Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol 26(4):620–625
Blanke CD, Rankin C, Corless C et al (2015) S0502: a SWOG phase III randomized study of imatinib, with or without bevacizumab, in patients with untreated metastatic or unresectable gastrointestinal stromal tumors. Oncologist 20(12):1353–1354
Botchkareva NV, Khlgatian M, Longley BJ et al (2001) SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit. FASEB J 15:645–658
Choi H, Charnsangavej C, Faia S et al (2007) Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol Off J Am Soc Clin Oncol 25(13):1753–1759
Dematteo RP, Lewis J, Leung D et al (2000) Two hundred gastrointestinal stromal tumors recurrence patterns and prognostic factors for survival. Ann Surg 231(1):51–58
Dematteo RP, Ballman K, Antonescu C et al (2009) Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373(9669):1097–1104
Demetri GD, von Meheren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347(7):472–480
Demetri GD, van Oosterom AT, Garrett CR et al (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368(9544):1329–1338
Demetri GD, Garret CR, Shöffsky P et al (2012) Complete longitudinal analyses of the randomized, placebo-controlled, phase III trial of sunitinib in patients with gastrointestinal stromal tumor following imatinib failure. Clin Cancer Res Off J Am Assoc Cancer Res 18(11):170–179
Demetri GD, Reichardt P, Kang Y-R et al (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):295–302
Desai J, Yassa L, Marqusee E et al (2006) Hypothyroidism after sunitinib treatment for patients with gastrointestinal stromal tumors. Ann Intern Med 145(9):660–664
Druker BJ, Talpaz M, Resta D et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344(14):1031–1037
Folkman J, Merler E, Abernathy C et al (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2):275–288
Ganjoo KN, Villalobos VM, Kamaya A et al (2014) A multicenter phase II study of pazopanib in patients with advanced gastrointestinal stromal tumors (GIST) following failure of at least imatinib and sunitinib. Ann Oncol 25(1):236–240
Gastrointestinal Stromal Tumor Meta-Analysis Group (MetaGIST) (2010) Comparison of two doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors: a meta-analysis of 1,640 patients. J Clin Oncol Off J Am Soc Clin Oncol 28(7):1247–1253
Ghatalia P, Morgan CJ, Je Y et al (2015) Congestive heart failure with vascular endothelial growth factor receptor tyrosine kinase inhibitors. Crit Rev Oncol Hematol 94:228–237
Gotink KJ, Verheul HMW (2010) Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13:1–14
Hirota S, Isozak K, Moriyama Y et al (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279(5350):577–580
Hirota S, Ohashi A, Nishida T et al (2003) Gain-of-function mutations of platelet-derived growth factor receptor α gene in gastrointestinal stromal tumors. Gastroenterology 125(3):660–667
Joensuu H, Robert PJ, Sarlomo-Rilkala M et al (2001) Effect of tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344(14):1052
Joensuu H, De Braud F, Grignani G et al (2011) Vatalanib for metastatic gastrointestinal stromal tumour (GIST) resistant to imatinib: final results of a phase II study. Br J Cancer 104:1686–1690
Lasota J, Miettinen M (2008) Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology 53(3):245–266
Le Cesne A, Blay JY, Bui BN et al (2010) Phase II study of oral masitinib mesilate in imatinib-naïve patients with locally advanced or metastatic gastro-intestinal stromal tumour (GIST). Eur J Cancer 46:1344–1351
León-Mateos L, Mosquera J, Antón Aparicio L (2015) Treatment of sunitinib-induced hypertension in solid tumor by nitric oxide donors. Redox Biol 6:421–425
Mannavola D, Coco P, Vannucchi G et al (2007) A novel tyrosine-kinase selective inhibitor, sunitinib, induces transient hypothyroidism by blocking iodine uptake. J Clin Endocrinol Metab 92(9):3531–3534
Montemurro M, Gelderblom H, Bitz U et al (2013) Sorafenib as third- or fourth-line treatment of advanced gastrointestinal stromal tumour and pretreatment including both imatinib and sunitinib, and nilotinib: a retrospective analysis. Eur J Cancer 49(5):1027–1031
Pollard PJ, Briere JJ, Alam NA et al (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14(15):2231–2239
Prenen H, Cools J, Mentens N et al (2006) Efficacy of the kinase inhibitor SU11248 against gastrointestinal stromal tumor mutants refractory to imatinib mesylate. Clin Cancer Res 12(8):2622–2627
Raica M, Cimpean AM (2010) Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals 3(3):572–599
Raimondi C, Fantin A, Lampropoulou A et al (2014) Imatinib inhibits VEGF-independent angiogenesis by targeting neuropilin 1-dependent ABL1 activation in endothelial cells. J Exp Med 211(6):1167–1183
Reichardt P, Baly J-Y, Gelderblom H et al (2012) Phase III study of nilotinib versus best supportive care with or without a TKI in patients with gastrointestinal stromal tumors resistant to or intolerant of imatinib and sunitinib. Ann Oncol 23(7):1680–1687
Ribatti D, Vacca A, Dammacco F (1999) The role of the vascular phase in solid tumor growth: a historical review. Neoplasia 1(4):293–302.
Schöffski P, Reichardt P, Blay J-Y et al (2010) A phase I-II study of everolimus (RAD001) in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Ann Oncol 21(10):1990–1998
Seifert AM, Zeng S, Zhang QJ et al (2017) PD-1/PD-L1 blockade enhances T cell activity and antitumor efficacy of imatinib in gastrointestinal stromal tumors. Clin Cancer Res 23(2):454–465
Soria JC, Massard C, Magne N et al (2009) Phase 1 dose-escalation study of oral tyrosine kinase inhibitor masitinib in advanced and/or metastatic solid cancers masitinib is a tyrosine kinase inhibitor with a pre-clinical profile suggesting. Europ Jurn of Cancer 45:2333–2341
Tuveson DA, Willis NA, Jacks T et al (2001) STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 20:5054–5058
Wada R, Arai H, Kure S et al (2016) “Wild type” GIST: clinicopathological features and clinical practice. Pathol Int 66(8):431–437
Zhou Y, Pathak HB, Belinsky M et al (2017) Combination of imatinib mesylate and AKT inhibitor provides synergistic effects in preclinical study of gastrointestinal stromal tumor. Clin Cancer Res 23(1):171–180
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this entry
Cite this entry
Benson, C., Libertini, M. (2019). Inhibition of Tumor Angiogenesis in GIST Therapy. In: Marmé, D. (eds) Tumor Angiogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-33673-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-33673-2_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-33671-8
Online ISBN: 978-3-319-33673-2
eBook Packages: Biomedical and Life SciencesReference Module Biomedical and Life Sciences