Developmental System Drift

Living reference work entry

Abstract

Developmental System Drift (DSD) is an evolutionary phenomenon whereby the genetic underpinnings of a trait in a common ancestor diverge in descendant lineages even as the trait itself remains conserved. Evidence for DSD comes from both interspecies hybridizations and comparative developmental genetic studies. The widespread occurrence of DSD implies that developmental systems are constantly evolving, even in the absence of selection for morphological change. Similar implications have been found in studies of the genetics of hybrid inviability and infertility, which reflect divergence in complex developmental systems that are perpetually under strong selection in all taxa. Gene duplications and compensatory changes in proteins and gene regulatory networks have been proposed to be the key mechanisms that drive DSD. DSD has implications for phylogenetic inference and biological homology, experimental tests of interspecies conservation of gene function, and convergent evolution. The burgeoning data and methods of comparative genomics, genome editing, and systems biology promise to greatly enhance our understanding of the dynamics and mechanisms of DSD.

Keywords

Homology Hybrid incompatibility Compensatory evolution Genetic divergence Developmental pathways 

References

  1. Bailey JA, Eichler EE (2006) Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet 7(7):552–564.  https://doi.org/10.1038/nrg1895 CrossRefPubMedGoogle Scholar
  2. Barriere A, Gordon K, Ruvinsky I (2012) Coevolution within and between regulatory loci can preserve promoter function despite evolutionary rate acceleration. PLoS Genet 8:e1002961CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beadell AV, Liu Q, Johnson DM, Haag ES (2011) Independent recruitments of a translational regulator in the evolution of self-fertile nematodes. Proc Natl Acad Sci U S A 108(49):19672–19677.  https://doi.org/10.1073/pnas.1108068108 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chan YF, Marks ME, Jones FC, Villarreal G Jr, Shapiro MD, Brady SD, Southwick AM, Absher DM, Grimwood J, Schmutz J, Myers RM, Petrov D, Jonsson B, Schluter D, Bell MA, Kingsley DM (2010) Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327(5963):302–305.  https://doi.org/10.1126/science.1182213 CrossRefPubMedGoogle Scholar
  5. Clark S, Chisholm A, Horvitz H (1993) Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell 74:43–55CrossRefPubMedGoogle Scholar
  6. Clifford R, Lee MH, Nayak S, Ohmachi M, Giorgini F, Schedl T (2000) FOG-2, a novel F-box containing protein, associates with the GLD-1 RNA binding protein and directs male sex determination in the C. elegans hermaphrodite germline. Development 127(24):5265–5276PubMedGoogle Scholar
  7. de Bono M, Hodgkin J (1996) Evolution of sex determination in Caenorhabditis: unusually high divergence of tra-1 and its functional consequences. Genetics 144(2):587–595PubMedGoogle Scholar
  8. Delattre M, Felix M (2001) Polymorphism and evolution of vulval precursor cell lineages within two nematode genera, Caenorhabditis and Oscheius. Curr Biol 11:631–643CrossRefPubMedGoogle Scholar
  9. Felix M (2007) Cryptic quantitative evolution of the vulva intercellular signaling network in Caenorhabditis. Curr Biol 17:103–114CrossRefPubMedGoogle Scholar
  10. Force A, Lynch M, Pickett FB, Amores A, Yan Y, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545PubMedPubMedCentralGoogle Scholar
  11. Haag ES (2007) Compensatory vs. pseudocompensatory evolution in molecular and developmental interactions. Genetica 129(1):45–55.  https://doi.org/10.1007/s10709-006-0032-3 CrossRefPubMedGoogle Scholar
  12. Haag ES, Wang S, Kimble J (2002) Rapid coevolution of the nematode sex-determining genes fem-3 and tra-2. Curr Biol 12(23):2035–2041CrossRefPubMedGoogle Scholar
  13. Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792CrossRefPubMedGoogle Scholar
  14. Johnson NA, Porter AH (2007) Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift. Genetica 129(1):57–70.  https://doi.org/10.1007/s10709-006-0033-2 CrossRefPubMedGoogle Scholar
  15. Kiontke K, Barriere A, Kolotuev I, Podbilewicz B, Sommer R, Fitch DH, Felix MA (2007) Trends, stasis, and drift in the evolution of nematode vulva development. Curr Biol 17(22):1925–1937.  https://doi.org/10.1016/j.cub.2007.10.061 CrossRefPubMedGoogle Scholar
  16. Milloz J, Duveau F, Nuez I, Felix M (2008) Intraspecific evolution of the intercellular signaling network underlying a robust developmental system. Genes Dev 22:3064–3075CrossRefPubMedPubMedCentralGoogle Scholar
  17. Pomiankowski A, Nothiger R, Wilkins A (2004) The evolution of the Drosophila sex-determination pathway. Genetics 166(4):1761–1773CrossRefPubMedPubMedCentralGoogle Scholar
  18. Schmalhausen II (1949) Factors of Evolution. Blackiston Company, PhiladelphiaGoogle Scholar
  19. Schulze J, Schierenberg E (2011) Evolution of embryonic development in nematodes. EvoDevo 2:18CrossRefPubMedPubMedCentralGoogle Scholar
  20. Shubin N, Alberch P (1986) A morphogenetic approach to the origin and basic organization of the tetrapod limb. In: Hecht W, Wallace B, Prance G (eds) Evolutionary biology, vol 20. Plenum, New York, pp 319–387CrossRefGoogle Scholar
  21. Sommer R (1997) Evolutionary changes of developmental mechanisms in the absence of cell lineage alterations during vulva formation in the Diplogastridae (Nematoda). Development 124:243–251PubMedGoogle Scholar
  22. Sommer R, Sternberg P (1996) Apoptosis and change of competence limit the size of the vulva equivalence group in Pristionchus pacificus: a genetic analysis. Curr Biol 6:52–59CrossRefPubMedGoogle Scholar
  23. Sternberg P, Horvitz H (1986) Pattern formation during vulval development in C. elegans. Cell 44:761–772CrossRefPubMedGoogle Scholar
  24. Takano T (1998) Loss of notum macrochaetae as an interspecific hybrid anomly between Drosophila melanogaster and D. simulans. Genetics 129:1435–1450Google Scholar
  25. True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119CrossRefPubMedGoogle Scholar
  26. Verster AJ, Ramani AK, McKay SJ, Fraser AG (2014) Comparative RNAi screens in C. elegans and C. briggsae reveal the impact of developmental system drift on gene function. PLoS Genet 10(2):e1004077.  https://doi.org/10.1371/journal.pgen.1004077 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wagner GP (2007) The developmental genetics of homology. Nat Rev Genet 8(6):473–479.  https://doi.org/10.1038/nrg2099 CrossRefPubMedGoogle Scholar
  28. Weiss KM, Fullerton SM (2000) Phenogenetic drift and the evolution of genotype–phenotype relationships. Theor Popul Biol 57:187–195CrossRefPubMedGoogle Scholar
  29. Zuckerkandl E (1965) The evolution of hemoglobin. Sci Am 212:110–118CrossRefPubMedGoogle Scholar
  30. Zuckerkandl E, Pauling L (1962) Molecular disease, evolution and genetic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 189–225Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of MarylandCollege ParkUSA
  2. 2.Department of Ecology and EvolutionCollege of Arts and Sciences, Stony Brook UniversityStony BrookUSA

Section editors and affiliations

  • Gerd B. Müller
    • 1
    • 2
  1. 1.The KLI InstituteKlosterneuburgAustria
  2. 2.University of ViennaViennaAustria

Personalised recommendations