Skip to main content

A Macroevolutionary Perspective on Developmental Constraints in Animals

  • Living reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

We review the importance of developmental mechanisms in animals in constraining evolutionary changes. We first discuss the importance of time scales at which such constraints are relevant and after that focus on near absolute constraints that act on macroevolutionary scales. We could find only a few well-underpinned examples of such near absolute constraints. We discuss three outstanding cases, the ancient metazoan constraint that differentiated cells cannot divide, constraints against changes of phylotypic stages in vertebrates and other higher taxa, and constraints against the evolution of parthenogenesis. These constraints all have major consequences, including many secondary constraints, and they have in common that they are caused by high levels of global developmental interactivity.

The global developmental interactivity almost inevitably causes mutations to have many harmful pleiotropic effects, and thus will be strongly selected against, leading to long-term evolutionary conservation. The discussed developmental constraints have major consequences for evolution and critically restrict regeneration capacity, life-history evolution, and body plan evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arthur W, Farrow M (1999) The pattern of variation in centipede segment number as an example of developmental constraint in evolution. J Theor Biol 200:183–191

    Article  CAS  Google Scholar 

  • Bell G (1989) Darwin and biology. The evolution of individuality. Leo W. Buss, Princeton University Press Princeton, New Jersey 1988.197 pp. J Hered 80:417–421

    Google Scholar 

  • Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Conner JK (2012) Quantitative genetic approaches to evolutionary constraint: how useful? Evolution 66:3313–3320

    Article  Google Scholar 

  • Cridge AG, Dearden PK, Brownfield LR (2016) The mid-developmental transition and the evolution of animal body plans. Ann Bot 117:833–843

    Article  Google Scholar 

  • Diez del Corral R, Olivera-Martinez I, Goriely A, Gale E, Maden M, Storey K (2003) Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40:65–79

    Article  CAS  Google Scholar 

  • Eisman RC, Kaufman TC (2007) Cytological investigation of the mechanism of parthenogenesis in Drosophila mercatorum. Fly 1:317–329

    Article  Google Scholar 

  • Engelstädter J, Hurst GDD (2006) Can maternally transmitted endosymbionts facilitate the evolution of haplodiploidy? J Evol Biol 19:194–202

    Article  Google Scholar 

  • Galis F, Metz JAJ (2001) Testing the vulnerability of the phylotypic stage: on modularity and evolutionary conservation. J Exp Zool B Mol Dev Evol 291:195–204

    Article  CAS  Google Scholar 

  • Galis F, Sinervo B (2002) Divergence and convergence in early embryonic stages of metazoans. Contr Zool 71:101–113

    Article  Google Scholar 

  • Galis F, Metz JAJ, van Alphen JJM (2018) Development and evolutionary constraints in animals. Ann Rev Ecol Evol Syst 49:499–522

    Article  Google Scholar 

  • Gönczy P (2015) Centrosomes and cancer: revisiting a long-standing relationship. Nature Rev 15:639–652

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of the San Marco and the Panglossian paradigm: a critique of the adaptationist program. Proc Royal Soc London B 205:581–598

    Article  CAS  Google Scholar 

  • Hadorn E (1961) Developmental genetics and lethal factors. Methuen, London

    Book  Google Scholar 

  • Heidstra R, Sabatini S (2014) Plant and animal stem cells: similar yet different. Nature Rev Mol Cell Biol 15:301–312

    Article  CAS  Google Scholar 

  • Henneguy LF (1898) Sur les rapports des cils vibratiles avec les centrosomes. Arch d’Anat Micr 1:481–496

    Google Scholar 

  • Hu H, Uesaka M, Guo S, Shimai K, Lu S-M, Li F, Fujimoto S, Ishikawa M, Liu S, Sasagawa Y, Zhang G, Kuratani S, Yu J-K, Kusakabe TG, Khaitovich P, Irie N (2017) Constrained vertebrate evolution by pleiotropic genes. Nature Ecol Evol 1:1722–1730

    Article  Google Scholar 

  • Jacquet P (2004) Sensitivity of germ cells and embryos to ionizing radiation. J Biol Regul Homeost Agenets 18:106–114

    CAS  Google Scholar 

  • Lenhossék M (1898) Ueber Flimmerzellen. Verhandl Der Anat Gesel Kiel 12:106–128

    Google Scholar 

  • Manandhar G, Schatten H, Sutovsky P (2005) Centrosome reduction during gametogenesis and its significance. Biol Reprod 72:2–13

    Article  CAS  Google Scholar 

  • Maynard Smith J, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L (1985) Developmental constraints and evolution. Q Rev Biol 60:265–287

    Article  Google Scholar 

  • Metz JAJ (2012) Adaptive dynamics. In: Hastings A, Gross LJ (eds) Encyclopedia of theoretical ecology. University of California Press, Berkeley, pp 7–17

    Google Scholar 

  • Peterson T, Müller GB (2016) Phenotypic novelty in EvoDevo: the distinction between continuous and discontinuous variation and its importance in evolutionary theory. Evol Biol 43:314–335

    Article  Google Scholar 

  • Sander K (1983) The evolution of patterning mechanisms: Gleanings from insect embryogenesis and spermatogenesis. In: Goodwin BC, Holder N, Wylie CC (eds) Development and Evolution. Cambridge Univ. Press, Cambridge, UK, p 137

    Google Scholar 

  • Schön I, Martens K, van Dijk P (eds) (2009) Lost sex. The evolutionary biology of parthenogenesis. Springer, Dordrecht

    Google Scholar 

  • Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21:172–185

    Article  CAS  Google Scholar 

  • Vermeij GJ (2015) Forbidden phenotypes and the limits of evolution. Interface Focus 5:20150028

    Article  Google Scholar 

  • Walz G (2017) Role of primary cilia in non-dividing post-mitotic cells. Cell Tissue Res 369:11–25

    Article  Google Scholar 

  • Whyte L (1964) Internal factors in evolution. Acta Biotheor 16:33–48

    Article  Google Scholar 

  • Wu J, Akhmanova A (2017) Microtubule-organizing centers. Ann Rev Cell Dev Biol 33:4.1–4.25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Galis .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Galis, F., Metz, J.A.J. (2019). A Macroevolutionary Perspective on Developmental Constraints in Animals. In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-33038-9_69-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33038-9_69-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33038-9

  • Online ISBN: 978-3-319-33038-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics