Skip to main content

A Process-Based Approach to the Study of Flower Morphological Variation

  • Living reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

One of the most striking elements of angiosperm evolution is the diversity of floral forms represented. Beyond modifications of existing structures, flowers can evolve novel elements that are often linked with functions associated with effective or efficient pollination. Yet despite this diversity of floral forms, certain flower structures are highly conserved, as are many of the genes that underlie their basic form. Here, a process-based approach is discussed as a means of investigating floral morphological diversity and studying the evolution of floral form. First, the advances in understanding the evolution of floral form derived from the traditional morphogenetic approach are discussed. Then, a discussion follows on the unique ways that a process-based approach can contribute to our understanding of developmental evolution leading to organ elaboration and morphological diversification, focusing on polarity as a case study. Finally, the current limitations of a process-based approach are discussed, while pointing out future venues of research in this area that might greatly improve our understanding of morphological diversification of flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almeida AMR, Yockteng R, Schnable JC, Alvarez-Buylla ER, Freeling M, Specht CD (2014) Co-option of the polarity network shapes filament morphology in the angiosperms. Nature Scientific Reports 4. https://doi.org/10.1038/srep06194

  • Alvarez-Buylla E, Chaos A, Aldana M, Benítez M, Cortes-Poza Y et al (2008) Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS One 3:e3626

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos AC, de Folter S, de Buen AG, Garray-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro_Nelson A, Sánchez-Corrales YE (2010) Flower development. In: American Society of Plant Biologists (ed) The Arabidopsis book. https://doi.org/10.1199/tab.0127

    Google Scholar 

  • APG IV, Angiosperm Phylogeny Group (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Article  Google Scholar 

  • Barrio RA, Romero-Arias JR, Noguez MA, Azpeitia E, Ortiz-Gutiérrez E, Hernández-Hernández V, Cortez-Posa Y, Alvarez-Buylla ER (2013) Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics: the Arabidopsis thaliana root as a study system. PLoS Comput Biol 9:e1003026. https://doi.org/10.1371/journal.pcbi.1003026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolker JA (1994) Model systems in developmental biology. BioEssays 17:451–455

    Article  Google Scholar 

  • Brigandt I, Love AC (2010) Evolutionary novelty and the evo-devo synthesis: field notes. Evol Biol 37:93–99

    Article  Google Scholar 

  • Coen E, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Wall PK, Leebens-Mack JH et al (2006) Widespread genome duplications through the history of flowering plants. Genome Res 16:738–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davilla-Velderrain J, Martínez-García JC, Alvarez-Buylla ER (2015) Modeling the epigenetic attractors landscape: towards a post-genomic mechanistic understanding of development. Front Genet 6:160. https://doi.org/10.3389/fgene.2015.00160.

    Article  Google Scholar 

  • Davilla-Velderrain J, Servin-Marquez A, Alvarez-Buylla ER (2013) Molecular evolution constraints in the floral organ specification regulatory network module across 18 angiosperm genomes. Mol Biol Evol 31. https://doi.org/10.1093/molbev/mst223

  • Della Pina S, Souer E, Koes R (2014) Arguments in the evo-devo debate: say it with flowers! J Exp Bot 65:2231–2242

    Article  CAS  PubMed  Google Scholar 

  • Fukushima K, Hasabe M (2013) Adaxial-abaxial polarity: the developmental basis of leaf shape diversity. Genesis 52:1–18

    Article  PubMed  Google Scholar 

  • Gilbert SF, Bolker JA (2001) Homologies of process and modular elements of embryonic construction. J Exp Zool 291:1–12

    Article  CAS  PubMed  Google Scholar 

  • Husbands AY, Chitwood DH, Plavskin Y, Timmermans MCP (2009) Signals and prepatterns: new insights into organ polarity in plants. Genes Dev 23:1986–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanno A, Nakada M, Akita Y, Hirai M (2007) Class B gene expression and the modified ABC model in nongrass monocots. Sci World J 7:268–279

    Article  CAS  Google Scholar 

  • Mabee PM (2006) Integrating evolution and development: the need for dioinformatics in evo-devo. Bioscience 56:301–309

    Article  Google Scholar 

  • Rijkema A, Vandenbussche M, Koes R, Heijmans K, Gerats T (2010) Variations on a theme: changes in the floral ABCs in angiosperms. Semin Cell Dev Biol 21:100–107

    Article  Google Scholar 

  • Nuño de la Rosa L, Etxeberria A (2011) Pattern and process in evo-devo: descriptions and explanations. In: de Regt H, Hartmann S, Okasha S (eds) . Springer, Amsterdam, pp 263–274

    Google Scholar 

  • Scholtz G (2008) On comparisons and causes in evolutionary developmental biology. In: Minelli G, Fusco G (eds) Evolving pathways: key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 144–159

    Chapter  Google Scholar 

  • Sharma B, Kramer E (2013) Sub- and neo-functionalization of APETALA3 paralogs have contributed to the evolution of novel organ identity in aquilegia (columbine, Rnnunculales). New Phytol 197:949–957

    Article  CAS  PubMed  Google Scholar 

  • Tickle C, Urrutia AO (2017) Perspectives on the history of evo-devo and the contemporary research landscape in the genomics era. Philosophical Transactions R Sco B 372:20150473

    Article  Google Scholar 

Download references

Acknowledgments

AMRA thanks CAPES (BJT069/2013) and INCT (IN-TREE, 465767/2014-1) for support. CDS acknowledges support from NSF DEB, IOS and AVAToL and animated discussions with K. Sears, P. Mabee, M. Wake, D. Howarth, D. Baum, the Specht Lab (esp. J. Martinez-Gomez, R. Bruenn, C. Tribble, J. Chery) and participants of the NSF funded NESCent workshop (grant number DBI-1249112 to C. Extavour and A. Rodrigo) on the future of Evo-Devo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelsea D. Specht .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Specht, C.D., Almeida, A.M.R. (2017). A Process-Based Approach to the Study of Flower Morphological Variation. In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-33038-9_61-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33038-9_61-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33038-9

  • Online ISBN: 978-3-319-33038-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics