Skip to main content

Spinal Plates and the Anterior Lumbar Interbody Arthrodesis

  • Living reference work entry
  • First Online:
  • 109 Accesses

Abstract

Each year over 200,000 lumbar spine fusions are performed. Fusion can be accomplished through an anterior, retroperitoneal approach, posterior or posterolateral approach, or more recently, through the lateral or transpsoas approach as pioneered by Pimenta and colleagues. Traditionally though, anterior interbody fusion (ALIF) has been a workhorse for discogenic pain and sagittal deformity of the lower lumbosacral spine. Most commonly this procedure involves placement of an interbody device followed by anterior tension band plating. But over the past decade and a half, new implants and new fusion devices have become available, which increase the robustness of this procedure. Here we discuss the basic indications of the ALIF procedure, provide a description of the classical ALIF procedure, and discuss current technologies.

This is a preview of subscription content, log in via an institution.

References

  • Akbarnia BA, Mundis J, Gregory M, Moazzaz P, Kabirian N, Bagheri R, Eastlack RK, Pawelek JB (2014) Anterior column realignment (ACR) for focal kyphotic spinal deformity using a lateral transpsoas approach and ALL release. 27:29–39. https://doi.org/10.1097/BSD.0b013e318287bdc1

  • An HS, Lim T, You J, Hong JH, Eck J, McGrady L (1995) Biomechanical evaluation of anterior thoracolumbar spinal instrumentation. 20:1979–1983. https://doi.org/10.1097/00007632-199509150-00003

  • Aryan HE, Berta S (2014) Approach to anterior lumbar interbody fusion. In: Nader R, Berta SC, Gragnaniello C, Sabbagh AJ, Levy ML (eds) Neurosurgery tricks of the trade: spine and peripheral nerves. Thieme, New York, pp 96–99

    Google Scholar 

  • Assad M, Jarzem P, Leroux MA, Coillard C, Chernyshov AV, Charette S, Rivard C (2003a) Porous titanium-nickel for intervertebral fusion in a sheep model: part 2. Surface analysis and nickel release assessment. J Biomed Mater Res 64B:121–129

    Article  CAS  Google Scholar 

  • Assad M, Jarzem P, Leroux MA, Coillard C, Chernyshov AV, Charette S, Rivard C (2003b) Porous titanium-nickel for intervertebral fusion in a sheep model: part 1. Histomorphometric and radiol anal 64:107

    Google Scholar 

  • Badlani N, Phillips FM (2014) Lateral lumbar interbody fusion. In: Zdeblick TA, Albert TJ (eds) The spine, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 357–372

    Google Scholar 

  • Beaubien BP, Derincek A, Lew WD, Wood KB (2005) In vitro, biomechanical comparison of an anterior lumbar interbody fusion with an anteriorly placed, low-profile lumbar plate and posteriorly placed pedicle screws or translaminar screws. 30:1846–1851. https://doi.org/10.1097/01.brs.0000174275.95104.12

  • Beaubien BP, Freeman AL, Turner JL, Castro C, Armstrong WD, Waugh LG, Dryer RF (2009) Comparative biomechanical evaluation of a lumbar spacer with integrated screws. Conference proceeding/poster abstract (Poster No. 1712) form 55th annual meeting of the Orthopaedic Research Society, Las Vegas, 22–25 February 2009

    Google Scholar 

  • Beaubien BP, Freeman AL, Turner JL, Castro CA, Armstrong WD, Waugh LG, Dryer RF (2010) Evaluation of a lumbar intervertebral spacer with integrated screws as a stand-alone fixation device. J Spinal Disord Tech 23:351–358. https://doi.org/10.1097/BSD.0b013e3181b15d00

    Article  PubMed  Google Scholar 

  • Beckman JM, Uribe JS (2017) MIS lateral lumbar interbody fusion. In: Steinmetz MA, Benzel EC (eds) Benzel’s spine surgery. Elsevier, Philadelphia, pp 667–673

    Google Scholar 

  • Bendersky M, Solá C, Muntadas J, Gruenberg M, Calligaris S, Mereles M, Valacco M, Bassani J, Nicolás M (2015) Monitoring lumbar plexus integrity in extreme lateral transpsoas approaches to the lumbar spine: a new protocol with anatomical bases. Eur Spine J 24:1051–1057. https://doi.org/10.1007/s00586-015-3801-9

    Article  PubMed  Google Scholar 

  • Benglis DM, Vanni S, Levi AD (2009) An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine 10:139

    Article  PubMed  Google Scholar 

  • Blumenthal SL, Baker J, Dossett A, Selby DK (1988) The role of anterior lumbar fusion for internal disc disruption. Spine 13:566–569

    Article  CAS  PubMed  Google Scholar 

  • Boden SD, Zdeblick TA, Sandhu HS, Heim SE (2000) The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 25:376–381

    Article  CAS  PubMed  Google Scholar 

  • Bozkus H, Chamberlain RH, Perez Garza LE, Crawford NR, Dickman CA (2004) Biomechanical comparison of anterolateral plate, lateral plate, and pedicle screws-rods for enhancing anterolateral lumbar interbody cage stabilization. 29:635–641. https://doi.org/10.1097/01.BRS.0000115126.13081.7D

  • Bradford DS, McBride GG (1987) Surgical management of thoracolumbar spine fractures with incomplete neurologic deficits. Clin Orthop Relat Res 218:201–216

    Google Scholar 

  • Brantigan JW, Steffee AD (1993) A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients. Spine 18:2106–2107

    Article  CAS  PubMed  Google Scholar 

  • Briem D, Strametz S, Schröder K, Meenen NM, Lehmann W, Linhart W, Ohl A, Rueger JM (2005) Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. J Mater Sci Mater Med 16:671–677. https://doi.org/10.1007/s10856-005-2539-z

    Article  CAS  PubMed  Google Scholar 

  • Burkus JK, Gornet MF, Dickman CA, Zdeblick TA (2002) Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15:337–349

    Article  PubMed  Google Scholar 

  • Burkus JK, Dorchak JD, Sanders DL (2003) Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine 28:372

    PubMed  Google Scholar 

  • Burkus JK, Gornet MF, Schuler TC, Kleeman TJ, Zdeblick TA (2009) Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. 91:1181–1189. https://doi.org/10.2106/JBJS.G.01485

  • Burns BH, Camb BC (1933) An operation for spondylolisthesis. Lancet 221:1233

    Article  Google Scholar 

  • Capener N (1932) Spondylolisthesis. British Journal of Surgery 19(75):374–386. https://doi.org/10.1002/bjs.1800197505. https://onlinelibrary.wiley.com/doi/10.1002/bjs.1800197505

  • Chang YS, Gu HO, Kobayashi M, Oka M (1998) Influence of various structure treatments on histological fixation of titanium implants. J Arthroplast 13:816–825

    Article  CAS  Google Scholar 

  • Cho D, Liau W, Lee W, Liu J, Chiu C, Sheu P (2002) Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. 51:1343–1350. https://doi.org/10.1097/00006123-200212000-00003

  • Cho K, Bridwell KH, Lenke LG, Berra A, Baldus C (2005) Comparison of Smith-Petersen versus pedicle subtraction osteotomy for the correction of fixed sagittal imbalance. Spine 30:2037; discussion 2038

    Article  Google Scholar 

  • Closkey RF, Parsons JR, Lee CK, Blacksin MF, Zimmermant MC (1993) Mechanics of interbody spinal fusion: analysis of critical bone graft area. 18:1011–1015. https://doi.org/10.1097/00007632-199306150-00010

  • Czerwein JK, Thakur N, Migliori SJ, Lucas P, Palumbo M (2011) Complications of anterior lumbar surgery. J Am Acad Orthop Surg 19:251–258

    Article  PubMed  Google Scholar 

  • de Kunder S, Rijkers K, Caelers IJMH, de Bie RA, Koehler PJ, van Santbrink H (2018) Lumbar interbody fusion, a historical overview and a future perspective:1. ePub ahead of print. https://doi.org/10.1097/BRS.0000000000002534

  • de Vasconcellos LMR, Leite DO, d Oliveira FN, Carvalho YR, Cairo CAA (2010) Evaluation of bone ingrowth into porous titanium implant: histomorphometric analysis in rabbits. 24:399–405. https://doi.org/10.1590/S1806-83242010000400005

  • DeBowes RM, Grant BD, Bagby GW, Gallina AM, Sande RD, Ratzlaff MH (1984) Cervical vertebral interbody fusion in the horse: a comparative study of bovine xenografts and autografts supported by stainless steel baskets. Am J Vet Res 45:191

    CAS  PubMed  Google Scholar 

  • del Rio J, Beguiristain J, Duart J (2007) Metal levels in corrosion of spinal implants. Eur Spine J 16:1055–1061. https://doi.org/10.1007/s00586-007-0311-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennes TJ, Schwartz J (2009) A nanoscale adhesion layer to promote cell attachment on PEEK. 131:3456–3457. https://doi.org/10.1021/ja810075c

  • Deukmedjian AR, Dakwar E, Ahmadian A, Smith DA, Uribe JS (2012) Early outcomes of minimally invasive anterior longitudinal ligament release for correction of sagittal imbalance in patients with adult spinal deformity. Sci World J 2012:1–7. https://doi.org/10.1100/2012/789698

    Article  Google Scholar 

  • Dick JC, Brodke DS, Zdeblick TA, Bartel BD, Kunz DN, Rapoff AJ (1997) Anterior instrumentation of the thoracolumbar spine. A biomechanical comparison. 22:744–750. https://doi.org/10.1097/00007632-199704010-00005

  • DiPaola CP, Jacobson JA, Awad H, Conrad BP, Rechtine Glenn R (2007) Screw pull-out force is dependent on screw orientation in an anterior cervical plate construct. 20:369–373. https://doi.org/10.1097/BSD.0b013e31802c2a4a

  • Dipaola CP, Jacobson JA, Awad H, Conrad BP, Rechtine GR (2008) Screw orientation and plate type (variable- vs. fixed-angle) effect strength of fixation for in vitro biomechanical testing of the Synthes CSLP. Spine J 8:717–722

    Article  PubMed  Google Scholar 

  • Do TD, Sutter R, Skornitzke S, Weber M (2018) CT and MRI techniques for imaging around orthopedic hardware. Rofo 190:31–41. https://doi.org/10.1055/s-0043-118127

    Article  PubMed  Google Scholar 

  • Dorward IG, Lenke LG, Bridwell KH, OʼLeary PT, Stoker GE, Pahys JM, Kang MM, Sides BA, Koester LA (2013) Transforaminal versus anterior lumbar interbody fusion in long deformity constructs: a matched cohort analysis. Spine 38:755. https://doi.org/10.1097/BRS.0b013e31828d6ca3

    Article  Google Scholar 

  • Du JY, Kiely PD, Bogner E, Al Maaieh M, Aichmair A, Salzmann SN, Huang RC (2017) Early clinical and radiological results of unilateral posterior pedicle instrumentation through a Wiltse approach with lateral lumbar interbody fusion. 3:338–348. https://doi.org/10.21037/jss.2017.06.16

  • Dunn HK (1984) Anterior stabilization of thoracolumbar injuries. Clin Orthop Relat Res 189:116–124

    Google Scholar 

  • Durham JW, Allen MJ, Rabiei A (2017) Preparation, characterization and in vitro response of bioactive coatings on polyether ether ketone. 105:560–567. https://doi.org/10.1002/jbm.b.33578

  • Dwyer AF, Newton NC, Sherwood AA (1969) An anterior approach to scoliosis. A preliminary report. Clin Orthop Relat Res 62:192–202

    Article  CAS  PubMed  Google Scholar 

  • Fogel GR, Parikh RD, Ryu SI, Turner AWL (2014) Biomechanics of lateral lumbar interbody fusion constructs with lateral and posterior plate fixation: laboratory investigation. 20:291–297. https://doi.org/10.3171/2013.11.SPINE13617

  • Freeman A, Walker J, Fen M, Bushelow M, Cain C, Tsantrizos A (2016) Biomechnical comparison of stand-alone anterior lumbar interbody fusion devices with secured fixation: four-screw locking plate vs. three-screw variable angle vs. blade fixation. In: Conference proceeding (ISASS16), Las Vegas

    Google Scholar 

  • Fu T, Wang I, Lu M, Hsieh M, Chen L, Chen W (2016) The fusion rate of demineralized bone matrix compared with autogenous iliac bone graft for long multi-segment posterolateral spinal fusion. BMC Musculoskelet Disord 17. https://doi.org/10.1186/s12891-015-0861-2

  • Fujibayashi S, Takemoto M, Neo M, Matsushita T, Kokubo T, Doi K, Ito T, Shimizu A, Nakamura T (2011) A novel synthetic material for spinal fusion: a prospective clinical trial of porous bioactive titanium metal for lumbar interbody fusion. Eur Spine J 20:1486–1495. https://doi.org/10.1007/s00586-011-1728-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Fyhrie DP, Vashishth D (2000) Bone stiffness predicts strength similarly for human vertebral cancellous bone in compression and for cortical bone in tension. Bone 26:169–173

    Article  CAS  PubMed  Google Scholar 

  • Geck MJ, Rinella A, Hawthorne D, Macagno A, Koester L, Sides B, Bridwell KH, Lenke LG, Shufflebarger HL (2009) Comparison of surgical treatment in Lenke 5C adolescent idiopathic scoliosis: anterior dual rod versus posterior pedicle fixation surgery: a comparison of two practices. Spine (Phila Pa 1976) 34:1942–1951

    Article  Google Scholar 

  • Gerber M, Crawford NR, Chamberlain RH, Fifield MS, LeHuec J, Dickman CA (2006) Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. 31:762–768. https://doi.org/10.1097/01.brs.0000206360.83728.d2

  • Ghanayem AJ, Zdeblick TA (1997) Anterior instrumentation in the management of thoracolumbar burst fractures. Clin Orthop Relat Res 335:89–100

    Article  Google Scholar 

  • Giang G, Mobbs R, Phan S, Tran TM, Phan K (2017) Evaluating outcomes of stand-alone anterior lumbar interbody fusion: a systematic review. World Neurosurg 104:259–271. https://doi.org/10.1016/j.wneu.2017.05.011

    Article  PubMed  Google Scholar 

  • Gibon E, Amanatullah DF, Loi F, Pajarinen J, Nabeshima A, Yao Z, Hamadouche M, Goodman SB (2017) The biological response to orthopaedic implants for joint replacement: part I: metals. J Biomed Mater Res Part B Appl Biomater 105:2162–2173. https://doi.org/10.1002/jbm.b.33734

    Article  CAS  Google Scholar 

  • Glassman SD, Carreon LY, Djurasovic M, Campbell MJ, Puno RM, Johnson JR, Dimar JR (2008) RhBMP-2 versus iliac crest bone graft for lumbar spine fusion: a randomized, controlled trial in patients over sixty years of age. Spine 33:2843–2849. https://doi.org/10.1097/BRS.0b013e318190705d

    Article  PubMed  Google Scholar 

  • Graham J (2006) Standard test methods for spine implants-chapter 13. In: Kurtz SM, Edidin A (eds) Spine technology handbook. Elsevier Inc, San Diego, pp 397–441

    Chapter  Google Scholar 

  • Gupta A, Kukkar N, Sharif K, Main BJ, Albers CE, El-Amin SF III (2015) Bone graft substitutes for spine fusion: a brief review. World J Orthop 6:449–456. https://doi.org/10.5312/wjo.v6.i6.449

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurr KR, McAfee PC, Shih C (1988) Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model. Journal of Bone and Joint Surgery-American Volume 70(8):1182–1191. http://www.ncbi.nlm.nih.gov/pubmed/3417703

  • Hadley ZS, Palmer DK, Williams PA, Cheng WK (2012) Pullout strength of anterior lumbar interbody fusion plates: fixed versus variable angle screw designs. J Spine. https://doi.org/10.4172/2165-7939.1000118

  • Han C, Lee E, Kim H, Koh Y, Kim KN, Ha Y, Kuh S (2010) The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. 31:3465–3470. https://doi.org/10.1016/j.biomaterials.2009.12.030

  • Harmon PH (1960) Anterior Extraperitoneal lumbar disk excision and vertebral body. Fusion 18:169–198

    Google Scholar 

  • Heary R, Yanni DS, Halim AY, Benzel EC (2017) Anterior lumbar interbody fusion. In: Steinmetz M, Benzel EC (eds) Benzel’s spine surgery. Elsevier, Philadelphia, pp 655–666

    Google Scholar 

  • Hitchon PW, Goel VK, Rogge TN, Torner JC, Dooris AP, Drake JS, Yang SJ, Totoribe K (2000) In vitro biomechanical analysis of three anterior thoracolumbar implants. 93:252–258. https://doi.org/10.3171/spi.2000.93.2.0252

  • Hong S, Lee S, Khoo LT, Yoon S, Holly LT, Shamie AN, Wang JC (2010) A comparison of fixed-hole and slotted-hole dynamic plates for anterior cervical discectomy and fusion. 23:22–26. https://doi.org/10.1097/BSD.0b013e31819877e7

  • Hsieh PC, Koski TR, O’Shaughnessy BA, Sugrue P, Salehi S, Ondra S, Liu JC (2007) Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine 7:379–386. https://doi.org/10.3171/SPI-07/10/379

    Article  PubMed  Google Scholar 

  • Humphries AW, Hawk HA, Berndt AL (1958) Anterior fusion of the lumbar spine using an internal fixation device. Surg Forum 770–773

    Google Scholar 

  • Humphries AW, Hawk WA, Berndt AL (1961) Anterior interbody fusion of lumbar vertebrae: a surgical technique. Surg Clin N Am 41:1685–1701

    Article  Google Scholar 

  • Hustedt JW, Blizzard DJ (2014) The controversy surrounding bone morphogenetic proteins in the spine: a review of current research. Yale J Biol Med 87:549–561

    PubMed  PubMed Central  Google Scholar 

  • Inose H, Yamada T, Mulati M, Hirai T, Ushio S, Yoshii T, Kato T, Kawabata S, Okawa A (2018) Bone turnover markers as a new predicting factor for nonunion after spinal fusion surgery. Spine 43:E34. https://doi.org/10.1097/BRS.0000000000001995

    Article  Google Scholar 

  • Jackson KL, Devine JG (2016) The effects of smoking and smoking cessation on spine surgery: a systematic review of the literature. Global Spine J 6:695–701. https://doi.org/10.1055/s-0036-1571285

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahangiri FR, Holmberg A, Sherman JH, Louis R, Elias J, Vega-Bermudez F (2010) Protecting the genitofemoral nerve during direct/extreme lateral interbody fusion (DLIF/XLIF) procedures. 50:321. https://doi.org/10.1080/1086508X.2010.11079786

  • Jeswani S, Drazin D, Liu JC, Ames C, Acosta FL (2012) Anterior lumbar interbody fusion: indications and techniques. In: Quiñones-Hinojosa A (ed) Schmidek & sweet operative neurosurgical techniques: indications, methods, and results, 6th edn. Elsevier Saunders, Philadelphia, pp 1955–1961

    Chapter  Google Scholar 

  • Jiménez-Avila JM, García-Valencia J, Bitar-Alatorre WE (2011) Risk factors affecting fusion in the treatment of lumbar spine instability. Acta Ortop Mex 25:156–160

    PubMed  Google Scholar 

  • Kanayama M, Cunningham BW, Haggerty CJ, Abumi K, Kaneda K, McAfee PC (2000) In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg 93:259–265

    CAS  PubMed  Google Scholar 

  • Kaneda K, Abumi K, Fujiya M (1984) Burst fractures with neurologic deficits of the thoracolumbar-lumbar spine. Results of anterior decompression and stabilization with anterior instrumentation. Spine 9:788–795

    Article  CAS  PubMed  Google Scholar 

  • Kebaish KM, Neubauer PR, Voros GD, Khoshnevisan MA, Skolasky RL (2011) Scoliosis in adults aged forty years and older: prevalence and relationship to age, race, and gender. Spine 36:731–736. https://doi.org/10.1097/BRS.0b013e3181e9f120

    Article  PubMed  Google Scholar 

  • Keller T, Holland MC (1997) Some notable American spine surgeons of the 19th century. Spine 22:1413–1417

    Article  CAS  PubMed  Google Scholar 

  • Kepler C, Bogner E, Herzog R, Huang R (2011) Anatomy of the psoas muscle and lumbar plexus with respect to the surgical approach for lateral transpsoas interbody fusion. Eur Spine J 20:550–556. https://doi.org/10.1007/s00586-010-1593-5

    Article  PubMed  Google Scholar 

  • Kienle A, Graf ND, Wilke H (2015) Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination? 16:235–242. https://doi.org/10.1016/j.spinee.2015.09.038

  • Kim YJ, Bridwell KH, Lenke LG, Rinella AS, Edward CI (2005) Pseudarthrosis in primary fusions for adult idiopathic scoliosis: incidence, risk factors, and outcome analysis. 30:468. https://doi.org/10.1097/01.brs.0000153392.74639.ea

  • Kim YJ, Bridwell KH, Lenke LG, Rhim S, Cheh G (2006) Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases. 31:2329. https://doi.org/10.1097/01.brs.0000238968.82799.d9

  • Kim D, O’Toole JE, Ogden AT, Eichholz KM, Song J, Christie SD, Fessler RG (2009) Minimally invasive posterolateral thoracic corpectomy: cadaveric feasibility study and report of four clinical cases. Neurosurgery 64:746–752

    Article  PubMed  Google Scholar 

  • Kim J, Lee K, Lee S, Lee H (2010) Which lumbar interbody fusion technique is better in terms of level for the treatment of unstable isthmic spondylolisthesis? J Neurosurg Spine 12:171–177. https://doi.org/10.3171/2009.9.SPINE09272

    Article  PubMed  Google Scholar 

  • Kim C, Harris JB, Muzumdar A, Khalil S, Sclafani JA, Raiszadeh K, Bucklen BS (2017) The effect of anterior longitudinal ligament resection on lordosis correction during minimally invasive lateral lumbar interbody fusion: biomechanical and radiographic feasibility of an integrated spacer/plate interbody reconstruction device. 43:102–108. https://doi.org/10.1016/j.clinbiomech.2017.02.006

  • Kornblum MB, Turner AWL, Cornwall GB, Zatushevsky MA, Phillips FM (2013) Biomechanical evaluation of stand-alone lumbar polyether-ether-ketone interbody cage with integrated screws. Spine J 13:77–84. https://doi.org/10.1016/j.spinee.2012.11.013

    Article  PubMed  Google Scholar 

  • Kostuik JP (1983) Anterior spinal cord decompression for lesions of the thoracic and lumbar spine, techniques, new methods of internal fixation results. 8:512–531. https://doi.org/10.1097/00007632-198307000-00008

  • Kotani Y, Cunningham BW, Parker LM, Kanayama M, McAfee PC (1999) Static and fatigue biomechanical properties of anterior thoracolumbar instrumentation systems. A synthetic testing model. 24:1406–1413. https://doi.org/10.1097/00007632-199907150-00004

  • Kumar N, Judith MR, Kumar A, Mishra V, Robert MC (2005) Analysis of stress distribution in lumbar interbody fusion. 30:1731–1735. https://doi.org/10.1097/01.brs.0000172160.78207.49

  • Kuslich SD, Ulstrom CL, Griffith SL, Ahern JW, Dowdle JD (1998) The Bagby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial. 23:1267–1278. https://doi.org/10.1097/00007632-199806010-00019

  • Kutz M, Adrezin RS, Barr RE, Batich C, Bellamkonda RV, Brammer AJ, Buchanan TS, Cook AM, Currie JM, Dolan AM, Elad D, Einav S, Fajardo LL, Gage KL, Grimm MJ, Grotberg JB, Helmus MN, Iftekhar A, Jasti BR, Johnson AT, Joskowicz L, Keaveny TM, Kohn DH, Leamy P, Li X, Madsen MT, Manal KT, Meilander NJ, Morgan EF, Muthuswamy J, Nolan PJ, Nowak MD, O’Leary JP, Pandy M, Peterson DR, Reddy NP, Reinkensmeyer DJ, Rockett P, Rowley BA, Schaefer DJ, Shade DM, Shen SI, Silver-Thorn MB, Smith J, Snyder RW, Tackel I, Taylor R, Thomenius KE, Towe BC, Wagner WR, Wang G, Weir RF, Williams MB, Yeh OC, Zhu L (2000) Standard handbook of biomedical engineering and design. McGraw-Hill, New York

    Google Scholar 

  • Laws CJ, Coughlin DG, Lotz JC, Serhan HA, Hu SS (2012) Direct lateral approach to lumbar fusion is a biomechanically equivalent alternative to the anterior approach: an in vitro study. 37:819–825. https://doi.org/10.1097/BRS.0b013e31823551aa

  • Lee SS, Lenke LG, Kuklo TR, Valenté L, Bridwell KH, Sides B, Blanke KM (2006) Comparison of Scheuermann kyphosis correction by posterior-only thoracic pedicle screw fixation versus combined anterior/posterior fusion. Spine 31:2316–2321. https://doi.org/10.1097/01.brs.0000238977.36165.b8

    Article  PubMed  Google Scholar 

  • Lee CS, Hwang CJ, Lee D, Kim Y, Lee HS (2011) Fusion rates of instrumented lumbar spinal arthrodesis according to surgical approach: a systematic review of randomized trials. 3:39–47. https://doi.org/10.4055/cios.2011.3.1.39

  • Lee BH, Yang JH, Kim HS, Suk KS, Lee HM, Park JO, Moon SH (2017) Effect of sagittal balance on risk of falling after lateral lumbar interbody fusion surgery combined with posterior surgery. Yonsei Med J 58:1177–1185. https://doi.org/10.3349/ymj.2017.58.6.1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Levi AD, Choi WG, Keller PJ, Heiserman JE, Sonntag VK, Dickman CA (1998) The radiographic and imaging characteristics of porous tantalum implants within the human cervical spine. 23:1245–1250. https://doi.org/10.1097/00007632-199806010-00014

  • Li JP, Habibovic P, Doel M, Wilson CE, Wijn JR, Blitterswijk CA, Groot K (2007) Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28:2810–2820

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Guo C, Zhou Q, Pu X, Song L, Wang H, Zhao C, Cheng S, Lan Y, Liu L (2014) Biomechanical comparison of anterior lumbar screw-plate fixation versus posterior lumbar pedicle screw fixation. J Huazhong Univ Sci Technol Med Sci 34:907–911. https://doi.org/10.1007/s11596-014-1372-3

    Article  Google Scholar 

  • Liu X, Ma J, Park P, Huang X, Xie N, Ye X (2017) Biomechanical comparison of multilevel lateral interbody fusion with and without supplementary instrumentation: a three-dimensional finite element study. 18. https://doi.org/10.1186/s12891-017-1387-6

  • Loguidice VA, Johnson RG, Guyer RD, Stith WJ, Ohnmeiss DD, Hochschuler SH, Rashbaum RF (1988) Anterior lumbar interbody fusion. Spine (Phila Pa 1976) 13:366–369

    Article  CAS  Google Scholar 

  • Louis R (1986) Fusion of the lumbar and sacral spine by internal fixation with screw plates. Clin Orthop Relat Res 203:18–33

    Google Scholar 

  • Lowe TG, Hashim S, Wilson LA, O’Brien MF, Smith DAB, Diekmann MJ, Trommeter J (2004) A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. 29:2389–2394. https://doi.org/10.1097/01.brs.0000143623.18098.e5

  • MacBarb RF, Lindsey DP, Bahney CS, Woods SA, Wolfe ML, Yerby SA (2017a) Fortifying the bone-implant Interface part 1: An in vitro evaluation of 3D-printed and TPS porous surfaces. 11:15. https://doi.org/10.14444/4015

  • MacBarb RF, Lindsey DP, Woods SA, Lalor PA, Gundanna MI, Yerby SA (2017b) Fortifying the bone-implant Interface part 2: An in vivo evaluation of 3D-printed and TPS-coated triangular implants. 11:16. https://doi.org/10.14444/4016

  • McDonough PW, Davis R, Tribus C, Zdeblick TA (2004) The management of acute thoracolumbar burst fractures with anterior corpectomy and Z-plate fixation. 29:1901–1908. https://doi.org/10.1097/01.brs.0000137059.03557.1d

  • McGilvray KC, Waldorff EI, Easley J, Seim HB, Zhang N, Linovitz RJ, Ryaby JT, Puttlitz CM (2017) Evaluation of a polyetheretherketone (PEEK) titanium composite interbody spacer in an ovine lumbar interbody fusion model: biomechanical, microcomputed tomographic, and histologic analyses. 17:1907–1916. https://doi.org/10.1016/j.spinee.2017.06.034

  • McGilvray KC, Easley J, Seim HB, Regan D, Berven SH, Hsu WK, Mroz TE, Puttlitz CM (2018) Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. 18:1250–1260. https://doi.org/10.1016/j.spinee.2018.02.018

  • Meidinger G, Imhoff AB, Paul J, Kirchhoff C, Sauerschnig M, Hinterwimmer S (2011) May smokers and overweight patients be treated with a medial open-wedge HTO? Risk factors for non-union. Knee Surg Sports Traumatol Arthrosc 19:333–339. https://doi.org/10.1007/s00167-010-1335-6

    Article  PubMed  Google Scholar 

  • Melton LJ, Chrischilles EA, Cooper C, Lane AW, Riggs BL (1992) Perspective. How many women have osteoporosis? 7:1005–1010. https://doi.org/10.1002/jbmr.5650070902

  • Miller EK, Neuman BJ, Jain A, Daniels AH, Ailon T, Sciubba DM, Kebaish KM, Lafage V, Scheer JK, Smith JS, Bess S, Shaffrey CI, Ames CP (2017) An assessment of frailty as a tool for risk stratification in adult spinal deformity surgery. Neurosurg Focus 43:E3. https://doi.org/10.3171/2017.10.FOCUS17472

    Article  PubMed  Google Scholar 

  • Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J spine surg (Hong Kong) 1:2

    Google Scholar 

  • Niu C, Liao J, Chen W, Chen L (2010) Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages. 23:310–316. https://doi.org/10.1097/BSD.0b013e3181af3a84

  • Noiset O, Schneider Y, Marchand-Brynaert J (1999) Fibronectin adsorption or/and covalent grafting on chemically modified PEEK film surfaces. 10:657–677. https://doi.org/10.1163/156856299X00865

  • Oh K, Lee CK, You NK, Kim SH, Cho KH (2013) Radiologic changes of anterior cervical discectomy and fusion using allograft and plate augmentation: comparison of using fixed and variable type screw. 10:160–164. https://doi.org/10.14245/kjs.2013.10.3.160

  • Ozgur BM, Aryan HE, Pimenta L, Taylor W (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6:435–443

    Article  PubMed  Google Scholar 

  • Palepu V, Peck JH, Simon DD, Helgeson MD, Nagaraja S (2017) Biomechanical evaluation of an integrated fixation cage during fatigue loading: a human cadaver study:1–8. https://doi.org/10.3171/2016.9.SPINE16650

  • Patacxil WM, Palmer DK, Rios D, Inceoglu S, Williams PA, Cheng WK (2012) Screw orientation and foam density interaction in pullout of anterior lumbar interbody fusion plates. Duke Orthop J 2:35–39

    Article  Google Scholar 

  • Patwardhan AG, Carandang G, Ghanayem AJ, Havey RM, Cunningham B, Voronov LI, Phillips FH (2003) Compressive preload improves the stability of anterior lumbar interbody fusion cage constructs. 85:1749–1756. https://doi.org/10.2106/00004623-200309000-00014

  • Peek RD, Wiltse LL (1990) History of spinal fusion. In: Anonymous spinal fusion. Springer, New York, pp 3–8

    Chapter  Google Scholar 

  • Pelletier MH, Cordaro N, Punjabi VM, Waites M, Lau A, Walsh WR (2016) PEEK versus Ti interbody fusion devices: resultant fusion, bone apposition, initial and 26-week biomechanics. 29:208

    Google Scholar 

  • Phan K, Mobbs RJ (2016) Evolution of design of interbody cages for anterior lumbar interbody fusion. Orthop Surg 8:270–277. https://doi.org/10.1111/os.12259

    Article  PubMed  PubMed Central  Google Scholar 

  • Phan K, Thayaparan GK, Mobbs RJ (2015) Anterior lumbar interbody fusion versus transforaminal lumbar interbody fusion – systematic review and meta-analysis. Br J Neurosurg 29:705–711. https://doi.org/10.3109/02688697.2015.1036838

    Article  PubMed  Google Scholar 

  • Phan K, Fadhil M, Chang N, Giang G, Gragnaniello C, Mobbs RJ (2017) Effect of smoking status on successful arthrodesis, clinical outcome, and complications after anterior lumbar interbody fusion (ALIF). World Neurosurg. https://doi.org/10.1016/j.wneu.2017.11.157

  • Pienkowski D, Stephens GC, Doers TM, Hamilton DM (1998) Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants. Spine 23:782–788

    Article  CAS  PubMed  Google Scholar 

  • Pimenta L, Turner AWL, Dooley ZA, Parikh RD, Peterson MD (2012) Biomechanics of lateral interbody spacers: going wider for going stiffer. TheScientificWorldJOURNAL 2012:381814

    Article  PubMed  PubMed Central  Google Scholar 

  • Quraishi NA, Konig M, Booker SJ, Shafafy M, Boszczyk BM, Grevitt MP, Mehdian H, Webb JK (2013) Access related complications in anterior lumbar surgery performed by spinal surgeons. Eur Spine J 22:16–20. https://doi.org/10.1007/s00586-012-2616-1

    Article  Google Scholar 

  • Ravindra V, Godzik J, Dailey A, Schmidt M, Bisson E, Hood R, Cutler A, Ray W (2015) Vitamin D levels and 1-year fusion outcomes in elective spine surgery: a prospective observational study. 40:1536–1541. https://doi.org/10.1097/BRS.0000000000001041

  • Ray CD (1997) Threaded titanium cages for lumbar interbody fusions. 22:667–679. https://doi.org/10.1097/00007632-199703150-00019

  • Regev GJ, Chen L, Dhawan M, Lee YP, Garfin SR, Kim CW (2009) Morphometric analysis of the ventral nerve roots and retroperitoneal vessels with respect to the minimally invasive lateral approach in normal and deformed spines. 34:1330–1335. https://doi.org/10.1097/BRS.0b013e3181a029e1

  • Reis MT, Reyes PM, BSE AI, Newcomb AGUS, Singh V, Chang SW, Kelly BP, Crawford NR (2016) Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation. 25:720–726. https://doi.org/10.3171/2016.4.SPINE151386

  • Riley MR, Doan AT, Vogel RW, Aguirre AO, Pieri KS, Scheid EH (2018) Use of motor evoked potentials during lateral lumbar interbody fusion reduces postoperative deficits.. Epub ahead of print. https://doi.org/10.1016/j.spinee.2018.02.024

  • Rios D, Patacxil WM, Palmer DK, Williams PA, Cheng WK, Inceoğlu S (2012) Pullout analysis of a lumbar plate with varying screw orientations: experimental and computational analyses. 37:E948. https://doi.org/10.1097/BRS.0b013e318254155a

  • Rodríguez-Olaverri JC, Hasharoni A, DeWal H, Nuzzo RM, Kummer FJ, Errico TJ (2005) The effect of end screw orientation on the stability of anterior instrumentation in cyclic lateral bending. 5:554–557. https://doi.org/10.1016/j.spinee.2005.03.014

  • Saville PA, Kadam AB, Smith HE, Arlet V (2016) Anterior hyperlordotic cages: early experience and radiographic results. J Neurosurg Spine 25:713–719. https://doi.org/10.3171/2016.4.SPINE151206

    Article  PubMed  Google Scholar 

  • Schwab F, Dubey A, Gamez L, El Fegoun AB, Hwang K, Pagala M, Farcy J (2005) Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine 30:1082–1085

    Article  PubMed  Google Scholar 

  • Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW (2017) Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. 44:23–29. https://doi.org/10.1016/j.jocn.2017.06.062

  • Seo DK, Kim MJ, Roh SW, Jeon SR (2017) Morphological analysis of interbody fusion following posterior lumbar interbody fusion with cages using computed tomography. 96:e7816. https://doi.org/10.1097/MD.0000000000007816

  • Song K, Taghavi C, Hsu M, Lee K, Kim G, Song J (2010) Plate augmentation in anterior cervical discectomy and fusion with cage for degenerative cervical spinal disorders. Eur Spine J 19:1677–1683. https://doi.org/10.1007/s00586-010-1283-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Spruit M, Falk RG, Beckmann L, Steffen T, Castelein RM (2005) The in vitro stabilising effect of polyetheretherketone cages versus a titanium cage of similar design for anterior lumbar interbody fusion. Eur Spine J 14:752–758. https://doi.org/10.1007/s00586-005-0961-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahal D, Madhavan K, Chieng LO, Ghobrial GM, Wang MY (2017) Metals in Spine. World Neurosurg 100:619–627. https://doi.org/10.1016/j.wneu.2016.12.105

    Article  PubMed  Google Scholar 

  • Taher F, Hughes AP, Lebl DR, Sama AA, Pumberger M, Aichmair A, Huang RC, Cammisa FP, Girardi FP (2013) Contralateral motor deficits after lateral lumbar interbody fusion. Spine 38:1959–1963

    Article  PubMed  Google Scholar 

  • Takahashi S, Delécrin J, Passuti N (2001) Intraspinal metallosis causing delayed neurologic symptoms after spinal instrumentation surgery. 26:8; discussion 1499. https://doi.org/10.1097/00007632-200107010-00024

  • Takemoto M, Fujibayashi S, Neo M, So K, Akiyama N, Matsushita T, Kokubo T, Nakamura T (2007) A porous bioactive titanium implant for spinal interbody fusion: an experimental study using a canine model. 7:435–443. https://doi.org/10.3171/SPI-07/10/435

  • Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, Matsushita T, Kokubo T, Matsuda S (2016) Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. 59:690–701. https://doi.org/10.1016/j.msec.2015.10.069

  • Tarpada SP, Morris MT, Burton DA (2017) Spinal fusion surgery: a historical perspective. 14:134–136. https://doi.org/10.1016/j.jor.2016.10.029

  • Tatsumi R, Lee Y, Khajavi K, Taylor W, Chen F, Bae H (2015) In vitro comparison of endplate preparation between four mini-open interbody fusion approaches. Eur Spine J 24:372–377. https://doi.org/10.1007/s00586-014-3708-x

    Article  PubMed  Google Scholar 

  • Teng I, Han J, Phan K, Mobbs R (2017) A meta-analysis comparing ALIF, PLIF, TLIF and LLIF. J Clin Neurosci 44:11–17. https://doi.org/10.1016/j.jocn.2017.06.013

    Article  PubMed  Google Scholar 

  • Tohmeh AG, Rodgers WB, Peterson MD (2011) Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. 14:31–37. https://doi.org/10.3171/2010.9.SPINE09871

  • Torstrick FB, Klosterhoff BS, Westerlund LE, Foley KT, Gochuico J, Lee CSD, Gall K, Safranski DL (2018) Impaction durability of porous polyether-ether-ketone (PEEK) and titanium-coated PEEK interbody fusion devices. 18:857–865. https://doi.org/10.1016/j.spinee.2018.01.003

  • Tzermiadianos MN, Mekhail A, Voronov LI, Zook J, Havey RM, Renner SM, Carandang G, Abjornson C, Patwardhan AG (2008) Enhancing the stability of anterior lumbar interbody fusion: a biomechanical comparison of anterior plate versus posterior transpedicular instrumentation. 33:E43. https://doi.org/10.1097/BRS.0b013e3181604644

  • Udby PM, Bech-Azeddine R (2015) Clinical outcome of stand-alone ALIF compared to posterior instrumentation for degenerative disc disease: a pilot study and a literature review. Clin Neurol Neurosurg 133:64–69. https://doi.org/10.1016/j.clineuro.2015.03.008

    Article  PubMed  Google Scholar 

  • Uribe JS, Arredondo N, Dakwar E, Vale FL (2010) Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. 13:260–266. https://doi.org/10.3171/2010.3.SPINE09766

  • van Wunnik BPW, Weijers PHE, van Helden SH, Brink PRG, Poeze M (2011) Osteoporosis is not a risk factor for the development of nonunion: a cohort nested case–control study. Injury 42:1491–1494. https://doi.org/10.1016/j.injury.2011.08.019

    Article  PubMed  Google Scholar 

  • Watkins MB (1953) Posterolateral fusion of the lumbar and lumbosacral spine. 35:1014–1018. https://doi.org/10.2106/00004623-195335040-00024

  • Watkins RG, Hanna R, Chang D, Watkins RG (2014) Sagittal alignment after lumbar interbody fusion: comparing anterior, lateral, and transforaminal approaches. J Spinal Disord Tech 27:253–256. https://doi.org/10.1097/BSD.0b013e31828a8447

    Article  PubMed  Google Scholar 

  • Winder MJ, Gambhir S (2016) Comparison of ALIF vs. XLIF for L4/5 interbody fusion: pros, cons, and literature review. J spine surg (Hong Kong) 2:2

    Article  Google Scholar 

  • Wu X, Liu X, Wei J, Ma J, Deng F, Wei S (2012) Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo. studies 7:1215–1225. https://doi.org/10.2147/IJN.S28101

    Article  CAS  Google Scholar 

  • Wu S, Li Y, Zhang Y, Li X, Yuan C, Hao Y, Zhang Z, Guo Z (2013) Porous Titanium-6 Aluminum-4 vanadium cage has better Osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. 37:E201. https://doi.org/10.1111/aor.12153

  • Yoganandan N, Arun MWJ, Dickman CA Benzel EC practical anatomy and fundamental biomechanics. In: Steinmetz MP, Benzel EC (eds) Benzel’s spine surgery. Elsevier, Philadelphia, pp 58–82

    Google Scholar 

  • Zdeblick TA, Warden KE, Zou D, McAfee PC, Abitbol JJ (1993) Anterior spinal fixators. A biomechanical in vitro study. 18:513–517. https://doi.org/10.1097/00007632-199318040-00016

  • Zhang J, Poffyn B, Sys G, Uyttendaele D (2012) Are stand-alone cages sufficient for anterior lumbar interbody fusion? Orthop Surg 4:11–14. https://doi.org/10.1111/j.1757-7861.2011.00164.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Li H, Li Y, Fogel GR, Liao Z, Liu W (2018) Biomechanical analysis of porous additive manufactured cages for lateral lumbar interbody fusion: a finite element analysis. 111:e591. https://doi.org/10.1016/j.wneu.2017.12.127

  • Zhao M, Li H, Liu X, Wei J, Ji J, Yang S, Hu Z, Wei S (2016) Response of human osteoblast to n-HA/PEEK – quantitative proteomic study of bio-effects of Nano-hydroxyapatite composite. 6:22832. https://doi.org/10.1038/srep22832

  • Zielke K, Stunkat R, Beaujean F Ventrale Derotationspondylodese. Vorläufiger Ergebnisbericht über 26 operierte Fälle. Arch orthop Unfall-Chir. 1976 January [cited Jun 26, 2018];85(3):257–77. Available from: https://link.springer.com/article/10.1007/BF00415189

  • Zura R, Mehta S, Della Rocca GJ, Steen RG (2016) Biological risk factors for nonunion of bone fracture. 4:1. https://doi.org/10.2106/JBJS.RVW.O.00008

  • Zura R, Braid-Forbes MJ, Jeray K, Mehta S, Einhorn TA, Watson JT, Della Rocca GJ, Forbes K, Steen RG (2017) Bone fracture nonunion rate decreases with increasing age: a prospective inception cohort study. Bone 95:26–32. https://doi.org/10.1016/j.bone.2016.11.006

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Sciubba .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pennington, Z., Ahmed, A.K., Sciubba, D.M. (2020). Spinal Plates and the Anterior Lumbar Interbody Arthrodesis. In: Cheng, B. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-33037-2_125-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33037-2_125-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33037-2

  • Online ISBN: 978-3-319-33037-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics