Skip to main content

The Evolution of Sex Determination in Plants

  • Reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

Separate sexes, i.e., the presence of male and female individuals in a species (= dioecy), do exist in flowering plants, despite being much less common than in animals. How becoming a male or a female (= sex determination) is achieved in dioecious plants is much less understood than it is in animals. On one hand, phylogenetic, ecological, and theoretical population genetics studies have provided a lot of information on what could be the evolutionary routes from hermaphroditism, the assumed ancestral sexual system in angiosperms, to dioecy, and what could be the genetics and the selective forces driving the evolution of males and females. On the other hand, genetic, molecular, and developmental data are scarce. Sex chromosomes have been described in a few dioecious species, and very recently two master sex-determining genes have been identified. We review here the theoretical findings on the evolution of dioecy and sex determination in plants and also discuss recent work on the genetics of the evolution of dioecy and on the molecular characterization of the first master sex-determining genes found in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akagi T, Henry IM, Tao R, Comai L (2014) Plant genetics. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346(6209):646–650

    Article  CAS  Google Scholar 

  • Ashman TL, Tennessen JA, Dalton RM, Govindarajulu R, Koski MH, Liston A (2015) Multilocus sex determination revealed in two populations of Gynodioecious wild strawberry, Fragaria vesca subsp. bracteata. G3 (Bethesda) 5(12):2759–2773

    Article  CAS  Google Scholar 

  • Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC, Tree of Sex Consortium (2014) Sex determination: why so many ways of doing it? PLoS Biol 12(7):e1001899

    Article  Google Scholar 

  • Barrett SC (2002) The evolution of plant sexual diversity. Nat Rev Genet 3(4):274–284

    Article  CAS  Google Scholar 

  • Bernasconi G, Antonovics J, Biere A, Charlesworth D, Delph LF, Filatov D, Giraud T, Hood ME, Marais GA, McCauley D, Pannell JR, Shykoff JA, Vyskot B, Wolfe LM, Widmer A (2009) Silene as a model system in ecology and evolution. Heredity (Edinb) 103(1):5–14

    Article  CAS  Google Scholar 

  • Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari MA, Fraenkel-Zagouri R, Kovalski I, Dogimont C, Perl-Treves R, Bendahmane A (2015) A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350(6261):688–691

    Article  CAS  Google Scholar 

  • Charlesworth D (1999) Theories of the evolution of dioecy. In: Dawson T, Geber MA, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin/Heidelberg, pp 33–60

    Chapter  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Article  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Delph LF, Touzet P, Bailey MF (2007) Merging theory and mechanism in studies of gynodioecy. Trends Ecol Evol 22(1):17–24

    Article  Google Scholar 

  • Desfeux C, Maurice S, Henry JP, Lejeune B, Gouyon PH (1996) Evolution of reproductive systems in the genus Silene. Proc R Soc Lond B Biol Sci 263(1369):409–414

    Article  CAS  Google Scholar 

  • Dufay M, Champelovier P, Käfer J, Henry JP, Mousset S, Marais GA (2014) An angiosperm-wide analysis of the gynodioecy-dioecy pathway. Ann Bot 114(3):539–548

    Article  CAS  Google Scholar 

  • Ehlers BK, Bataillon T (2007) ‘Inconstant males’ and the maintenance of labile sex expression in subdioecious plants. New Phytol 174(1):194–211

    Article  Google Scholar 

  • Golenberg EM, West NW (2013) Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants. Am J Bot 100(6):1022–1037

    Article  CAS  Google Scholar 

  • Hobza R, Kejnovsky E, Vyskot B, Widmer A (2007) The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes. Mol Gen Genomics 278(6):633–638

    Article  CAS  Google Scholar 

  • Käfer J, Marais GAB, Pannell JR (2017) On the rarity of dioecy in flowering plants. Mol Ecol 26(5):1225–1241

    Article  Google Scholar 

  • Li Q, Liu B (2017) Genetic regulation of maize flower development and sex determination. Planta 245(1):1–14

    Article  CAS  Google Scholar 

  • Matson CK, Zarkower D (2012) Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet 13(3):163–174

    Article  CAS  Google Scholar 

  • Maurice S, Belhassen E, Couvet D, Gouyon PH (1994) Evolution of dioecy: can nuclear-cytoplasmic interactions select for maleness? Heredity (Edinb) 73(Pt 4):346–354

    Article  Google Scholar 

  • Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Ann Rev Plant Biol 62:485–514

    Article  CAS  Google Scholar 

  • Murase K, Shigenobu S, Fujii S, Ueda K, Murata T, Sakamoto A, Wada Y, Yamaguchi K, Osakabe Y, Osakabe K, Kanno A, Ozaki Y, Takayama S (2017) MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells 22(1):115–123

    Article  CAS  Google Scholar 

  • Muyle A, Shearn R, Marais GAB (2017) The evolution of sex chromosomes and dosage compensation in plants. Genome Biol Evol 9(3):627–645

    Article  CAS  Google Scholar 

  • Pannell JR, Eppley SM, Dorken ME, Berjano R (2014) Regional variation in sex ratios and sex allocation in androdioecious Mercurialis annua. J Evol Biol 27(7):1467–77. doi:10.1111/jeb.12352

    Google Scholar 

  • Papadopulos AS, Chester M, Ridout K, Filatov DA (2015) Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc Natl Acad Sci U S A 112(42):13021–13026

    Article  CAS  Google Scholar 

  • Rautenberg A, Hathaway L, Oxelman B, Prentice HC (2010) Geographic and phylogenetic patterns in Silene section Melandrium (Caryophyllaceae) as inferred from chloroplast and nuclear DNA sequences. Mol Phylogenet Evol 57(3):978–991

    Article  CAS  Google Scholar 

  • Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101(10):1588–1596

    Article  Google Scholar 

  • Renner SS (2016) Pathways for making unisexual flowers and unisexual plants: moving beyond the “two mutations linked on one chromosome” model. Am J Bot 103(4):587–589

    Article  CAS  Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82(5):596–606

    Article  Google Scholar 

  • Saumitou-Laprade P, Vernet P, Vassiliadis C, Hoareau Y, de Magny G, Domméeand B, Lepart J (2010) A self-incompatibility system explains high male frequencies in an androdioecious plant. Science 327:1648–1650

    Article  CAS  Google Scholar 

  • Schultz S (1994) Nucleo-cytoplasmic male sterility and alternative routes to dioecy. Evolution 48:1933–1945

    Article  Google Scholar 

  • Sousa A, Fuchs J, Renner SS (2013) Molecular cytogenetics (FISH, GISH) of Coccinia grandis: a ca. 3 myr-old species of cucurbitaceae with the largest Y/autosome divergence in flowering plants. Cytogenet Genome Res 139(2):107–118

    Article  CAS  Google Scholar 

  • Spigler RB, Ashman TL (2012) Gynodioecy to dioecy: are we there yet? Ann Bot 109:531–543

    Article  Google Scholar 

  • Taylor DR (1994) The genetic basis of sex ratio in Silene alba (= S. latifolia). Genetics 136(2):641–651

    Article  CAS  Google Scholar 

  • Touzet P, Meyer EH (2014) Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 19(Pt B):166–171

    Article  CAS  Google Scholar 

  • VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, Han J, Aryal R, Gschwend AR, Wang J, Na JK, Huang L, Zhang L, Miao W, Gou J, Arro J, Guyot R, Moore RC, Wang ML, Zee F, Charlesworth D, Moore PH, Yu Q, Ming R (2015) Origin and domestication of papaya Yh chromosome. Genome Res 25(4):524–533

    Article  CAS  Google Scholar 

  • Wang J, Na JK, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, Navajas-Pérez R, Feltus FA, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci U S A 109(34):13710–13715

    Article  CAS  Google Scholar 

  • Weeks SC (2012) The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the animalia. Evolution 66(12):3670–3686

    Article  Google Scholar 

  • Zluvova J, Lengerova M, Markova M, Hobza R, Nicolas M, Vyskot B, Charlesworth D, Negrutiu I, Janousek B (2005) The inter-specific hybrid Silene latifolia x S. viscosa reveals early events of sex chromosome evolution. Evol Dev 7(4):327–336

    Article  Google Scholar 

  • Zluvova J, Georgiev S, Janousek B, Charlesworth D, Vyskot B, Negrutiu I (2007) Early events in the evolution of the Silene latifolia Y chromosome: male specialization and recombination arrest. Genetics 177(1):375–386

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jos Käfer and Editor Charlie Scutt for comments and suggestions for improving this manuscript. We apologize to all colleagues whom work could not be cited due to number of references restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel A. B. Marais .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fruchard, C., Marais, G.A.B. (2021). The Evolution of Sex Determination in Plants. In: Nuño de la Rosa, L., Müller, G.B. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-32979-6_168

Download citation

Publish with us

Policies and ethics