Abstract
Separate sexes, i.e., the presence of male and female individuals in a species (= dioecy), do exist in flowering plants, despite being much less common than in animals. How becoming a male or a female (= sex determination) is achieved in dioecious plants is much less understood than it is in animals. On one hand, phylogenetic, ecological, and theoretical population genetics studies have provided a lot of information on what could be the evolutionary routes from hermaphroditism, the assumed ancestral sexual system in angiosperms, to dioecy, and what could be the genetics and the selective forces driving the evolution of males and females. On the other hand, genetic, molecular, and developmental data are scarce. Sex chromosomes have been described in a few dioecious species, and very recently two master sex-determining genes have been identified. We review here the theoretical findings on the evolution of dioecy and sex determination in plants and also discuss recent work on the genetics of the evolution of dioecy and on the molecular characterization of the first master sex-determining genes found in plants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akagi T, Henry IM, Tao R, Comai L (2014) Plant genetics. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346(6209):646–650
Ashman TL, Tennessen JA, Dalton RM, Govindarajulu R, Koski MH, Liston A (2015) Multilocus sex determination revealed in two populations of Gynodioecious wild strawberry, Fragaria vesca subsp. bracteata. G3 (Bethesda) 5(12):2759–2773
Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC, Tree of Sex Consortium (2014) Sex determination: why so many ways of doing it? PLoS Biol 12(7):e1001899
Barrett SC (2002) The evolution of plant sexual diversity. Nat Rev Genet 3(4):274–284
Bernasconi G, Antonovics J, Biere A, Charlesworth D, Delph LF, Filatov D, Giraud T, Hood ME, Marais GA, McCauley D, Pannell JR, Shykoff JA, Vyskot B, Wolfe LM, Widmer A (2009) Silene as a model system in ecology and evolution. Heredity (Edinb) 103(1):5–14
Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari MA, Fraenkel-Zagouri R, Kovalski I, Dogimont C, Perl-Treves R, Bendahmane A (2015) A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350(6261):688–691
Charlesworth D (1999) Theories of the evolution of dioecy. In: Dawson T, Geber MA, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin/Heidelberg, pp 33–60
Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997
Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton
Delph LF, Touzet P, Bailey MF (2007) Merging theory and mechanism in studies of gynodioecy. Trends Ecol Evol 22(1):17–24
Desfeux C, Maurice S, Henry JP, Lejeune B, Gouyon PH (1996) Evolution of reproductive systems in the genus Silene. Proc R Soc Lond B Biol Sci 263(1369):409–414
Dufay M, Champelovier P, Käfer J, Henry JP, Mousset S, Marais GA (2014) An angiosperm-wide analysis of the gynodioecy-dioecy pathway. Ann Bot 114(3):539–548
Ehlers BK, Bataillon T (2007) ‘Inconstant males’ and the maintenance of labile sex expression in subdioecious plants. New Phytol 174(1):194–211
Golenberg EM, West NW (2013) Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants. Am J Bot 100(6):1022–1037
Hobza R, Kejnovsky E, Vyskot B, Widmer A (2007) The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes. Mol Gen Genomics 278(6):633–638
Käfer J, Marais GAB, Pannell JR (2017) On the rarity of dioecy in flowering plants. Mol Ecol 26(5):1225–1241
Li Q, Liu B (2017) Genetic regulation of maize flower development and sex determination. Planta 245(1):1–14
Matson CK, Zarkower D (2012) Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet 13(3):163–174
Maurice S, Belhassen E, Couvet D, Gouyon PH (1994) Evolution of dioecy: can nuclear-cytoplasmic interactions select for maleness? Heredity (Edinb) 73(Pt 4):346–354
Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Ann Rev Plant Biol 62:485–514
Murase K, Shigenobu S, Fujii S, Ueda K, Murata T, Sakamoto A, Wada Y, Yamaguchi K, Osakabe Y, Osakabe K, Kanno A, Ozaki Y, Takayama S (2017) MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells 22(1):115–123
Muyle A, Shearn R, Marais GAB (2017) The evolution of sex chromosomes and dosage compensation in plants. Genome Biol Evol 9(3):627–645
Pannell JR, Eppley SM, Dorken ME, Berjano R (2014) Regional variation in sex ratios and sex allocation in androdioecious Mercurialis annua. J Evol Biol 27(7):1467–77. doi:10.1111/jeb.12352
Papadopulos AS, Chester M, Ridout K, Filatov DA (2015) Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc Natl Acad Sci U S A 112(42):13021–13026
Rautenberg A, Hathaway L, Oxelman B, Prentice HC (2010) Geographic and phylogenetic patterns in Silene section Melandrium (Caryophyllaceae) as inferred from chloroplast and nuclear DNA sequences. Mol Phylogenet Evol 57(3):978–991
Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101(10):1588–1596
Renner SS (2016) Pathways for making unisexual flowers and unisexual plants: moving beyond the “two mutations linked on one chromosome” model. Am J Bot 103(4):587–589
Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82(5):596–606
Saumitou-Laprade P, Vernet P, Vassiliadis C, Hoareau Y, de Magny G, Domméeand B, Lepart J (2010) A self-incompatibility system explains high male frequencies in an androdioecious plant. Science 327:1648–1650
Schultz S (1994) Nucleo-cytoplasmic male sterility and alternative routes to dioecy. Evolution 48:1933–1945
Sousa A, Fuchs J, Renner SS (2013) Molecular cytogenetics (FISH, GISH) of Coccinia grandis: a ca. 3 myr-old species of cucurbitaceae with the largest Y/autosome divergence in flowering plants. Cytogenet Genome Res 139(2):107–118
Spigler RB, Ashman TL (2012) Gynodioecy to dioecy: are we there yet? Ann Bot 109:531–543
Taylor DR (1994) The genetic basis of sex ratio in Silene alba (= S. latifolia). Genetics 136(2):641–651
Touzet P, Meyer EH (2014) Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 19(Pt B):166–171
VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, Han J, Aryal R, Gschwend AR, Wang J, Na JK, Huang L, Zhang L, Miao W, Gou J, Arro J, Guyot R, Moore RC, Wang ML, Zee F, Charlesworth D, Moore PH, Yu Q, Ming R (2015) Origin and domestication of papaya Yh chromosome. Genome Res 25(4):524–533
Wang J, Na JK, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, Navajas-Pérez R, Feltus FA, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci U S A 109(34):13710–13715
Weeks SC (2012) The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the animalia. Evolution 66(12):3670–3686
Zluvova J, Lengerova M, Markova M, Hobza R, Nicolas M, Vyskot B, Charlesworth D, Negrutiu I, Janousek B (2005) The inter-specific hybrid Silene latifolia x S. viscosa reveals early events of sex chromosome evolution. Evol Dev 7(4):327–336
Zluvova J, Georgiev S, Janousek B, Charlesworth D, Vyskot B, Negrutiu I (2007) Early events in the evolution of the Silene latifolia Y chromosome: male specialization and recombination arrest. Genetics 177(1):375–386
Acknowledgments
The authors thank Jos Käfer and Editor Charlie Scutt for comments and suggestions for improving this manuscript. We apologize to all colleagues whom work could not be cited due to number of references restrictions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this entry
Cite this entry
Fruchard, C., Marais, G.A.B. (2021). The Evolution of Sex Determination in Plants. In: Nuño de la Rosa, L., Müller, G.B. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-32979-6_168
Download citation
DOI: https://doi.org/10.1007/978-3-319-32979-6_168
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32977-2
Online ISBN: 978-3-319-32979-6
eBook Packages: Biomedical and Life SciencesReference Module Biomedical and Life Sciences