Encyclopedia of Wireless Networks

Living Edition
| Editors: Xuemin (Sherman) Shen, Xiaodong Lin, Kuan Zhang

Cognitive Heterogeneous Networks

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-32903-1_45-1



In cognitive heterogeneous wireless networks, the available spectrum resources for each network are dynamic and limited. It is difficult to provision quality of service (QoS) to secondary mobile terminals (MTs). Hence, integrating cognitive heterogeneous wireless networks can help to provide various classes of service to secondary MTs and to support seamless secondary MT roaming. In order to guarantee QoS for MTs, multi-homing technology can be applied, where the data stream from an MT is split into multiple sub-streams, and transmitted over multiple networks by different radio interfaces simultaneously (Xu et al., 2017a,b).

Historical Background

In the fifth generation (5G) mobile communication systems, heterogeneous wireless networks will use various wireless access technologies, e.g., macrocells providing low-to-medium rate services with a large...

This is a preview of subscription content, log in to check access.


  1. Ahuja K, Xiao Y, van der Schaar M (2015) Efficient interference management policies for femtocell networks. IEEE Trans Wireless Commun 14(9):4879–4893CrossRefGoogle Scholar
  2. Ghosh C, Roy S, Cavalcanti D (2011) Coexistence challenges for heterogeneous cognitive wireless networks in TV white spaces. IEEE Wirel Commun 18(4):22–31CrossRefGoogle Scholar
  3. Guler B, Yener A (2014) Uplink interference management for coexisting MIMO femtocell and macrocell networks: an interference alignment approach. IEEE Trans Wirel Commun 13(4):2246–2257CrossRefGoogle Scholar
  4. Gunawardena S, Zhuang W (2011) Capacity analysis and call admission control in distributed cognitive radio networks. IEEE Trans Wirel Commun 10(9): 3110–3120CrossRefGoogle Scholar
  5. Habachi O, El-azouzi R, Hayel Y (2013) A Stackelberg model for opportunistic sensing in cognitive radio networks. IEEE Trans Wirel Commun 12(5):2148–2159CrossRefGoogle Scholar
  6. Shaat M, Bader F (2012) Asymptotically optimal resource allocation in OFDM-based cognitive networks with multiple relays. IEEE Trans Wirel Commun 11(3):892–897CrossRefGoogle Scholar
  7. Xu L, Nallanathan A (2016) Energy-efficient chance-constrained resource allocation for multicast cognitive OFDM network. IEEE J Sel Areas Commun 34(5):1298–1306CrossRefGoogle Scholar
  8. Xu L, Li Y-P, Yang Y-W, Zhang X, Tang Z-M, Lan S-H (2014) Proportional fairness resource allocation scheme based on quantised feedback for multiuser orthogonal frequency division multiplexing system. IET Commun 8(16):2925–2932CrossRefGoogle Scholar
  9. Xu L, Wang P, Li Q, Jiang Y (2017a) Call admission control with inter-network cooperation for cognitive heterogeneous networks. IEEE Trans Wirel Commun 16(3):1963–1973CrossRefGoogle Scholar
  10. Xu L, Nallanathan A and Yang Y (2017) Video Packet Scheduling With Stochastic QoS for Cognitive Heterogeneous Networks. IEEE Transactions on Vehicular Technology 66(8):7518–7526CrossRefGoogle Scholar
  11. Xu L, Nallanathan A, Song X (2017c) Joint video packet scheduling, subchannel assignment and power allocation for cognitive heterogeneous networks. IEEE Trans Wirel Commun 16(3):1703–1712CrossRefGoogle Scholar
  12. Zhang Y, Leung C (2009) Resource allocation in an OFDM-based cognitive radio system. IEEE Trans Commun 57(7):1928–1931CrossRefGoogle Scholar
  13. Zhang H, Chu X, Guo W, Wang S (2015) Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Commun Mag 53(3): 158–164CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nanjing University of Science and TechnologyNanjingChina

Section editors and affiliations

  • Ping Wang
    • 1
  1. 1.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore