Encyclopedia of Wireless Networks

Living Edition
| Editors: Xuemin (Sherman) Shen, Xiaodong Lin, Kuan Zhang

Brain-Machine Interfaces

  • Josep Miquel JornetEmail author
  • Michal K. Stachowiak
  • Sasitharan Balasubramaniam
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-32903-1_226-1

Definition

Brain-machine interfaces (BMIs) refer to communication systems between the brain and an external device. Desired properties of BMIs include bidirectionality, high spatial and temporal resolution, low invasiveness, accuracy, and robustness. In this paper, the different types of BMIs, the state of the art, and the future directions are discussed, in addition to highlighting their key applications.

Historical Background

For many decades, the interaction between humans and machines has been restricted to the exchange of visual, auditory, and tactile information. A conceptual analysis of the existing human-machine interfaces (HMI) reveals that the amount of useful information that can be exchanged between humans and machines is not limited by the capabilities of the human brain or those of the machine processor, but by the interfaces between them. Simply stated, from an engineering perspective, the human being can be modeled as a macro-systemwith a processing powerhouse, i.e.,...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgements

This work was supported by the U.S. National Science Foundation (NSF) under Grant No. CBET-1706050.

References

  1. Akyildiz IF, Jornet JM (2010) Electromagnetic wireless nanosensor networks. Nano Commun Netw (Elsevier) J 1(1):3–19CrossRefGoogle Scholar
  2. Deisseroth K (2011) Optogenetics. Nat Methods 8(1):26–29CrossRefGoogle Scholar
  3. Donohoe M, Balasubramaniam S, Jennings B, Jornet JM (2016) Powering in-body nanosensors with ultrasounds. IEEE Trans Nanotechnol 15(2):151–154CrossRefGoogle Scholar
  4. Dorfmuller J, Vogelgesang R, Khunsin W, Rockstuhl C, Etrich C, Kern K (2010) Plasmonic nanowire antennas: experiment, simulation, and theory. Nano Lett 10(9):3596–3603CrossRefGoogle Scholar
  5. Feng L, Wong ZJ, Ma RM, Wang Y, Zhang X (2014) Single-mode laser by parity-time symmetry breaking. Science 346(6212):972–975CrossRefGoogle Scholar
  6. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171CrossRefGoogle Scholar
  7. Kwon KY, Lee HM, Ghovanloo M, Weber A, Li W (2014) A wireless slanted optrode array with integrated micro leds for optogenetics. In: 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, pp 813–816Google Scholar
  8. Leuthardt EC, Miller KJ, Schalk G, Rao RP, Ojemann JG (2006) Electrocorticography-based brain computer interface-the seattle experience. IEEE Trans Neural Syst Rehabil Eng 14(2):194–198CrossRefGoogle Scholar
  9. Marblestone AH, Zamft BM, Maguire YG, Shapiro MG, Cybulski TR, Glaser JI, Amodei D, Stranges PB, Kalhor R, Dalrymple DA, Seo D, Alon E, Maharbiz MM, Carmena JM, Rabaey JM, Boyden ES, Church GM, Kording KP (2013) Physical principles for scalable neural recording. Front Comput Neurosci 7(137). https://doi.org/10.3389/fncom.2013.00137
  10. McGovern B, Berlinguer Palmini R, Grossman N, Drakakis E, Poher V, Neil M, Degenaar P (2010) A new individually addressable micro-led array for photogenetic neural stimulation. IEEE Trans Biomed Circuits Syst 4(6):469–476CrossRefGoogle Scholar
  11. Millan J, Renkens F, Mourino J, Gerstner W (2004) Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng 51(6): 1026–1033CrossRefGoogle Scholar
  12. Nafari M, Jornet JM (2017) Modeling and performance analysis of metallic plasmonic nano-antennas for wireless optical communication in nanonetworks. IEEE Access 5:6389–6398CrossRefGoogle Scholar
  13. Noel A, Makrakis D, Eckford AW (2018) Distortion distribution of neural spike train sequence matching with optogenetics. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2018.2819200
  14. Seo D, Carmena JM, Rabaey JM, Alon E, Maharbiz MM (2013) Neural dust: an ultrasonic, low power solution for chronic brain-machine interfaces. arXiv preprint arXiv:13072196Google Scholar
  15. Stachowiak EK, Benson CA, Narla ST, Dimitri A, Bayona-Chuye LE, Dhiman S, Harikrishnan K, Elahi S, Freedman D, Brennand KJ, Stachowiak MK (2017) Cerebral organoids reveal early cortical maldevelopment in schizophrenia? Computational anatomy and genomics, role of fgfr1. Transcult Psychiatry 7(11):6CrossRefGoogle Scholar
  16. Wang ZL (2008) Towards self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv Funct Mater 18(22):3553–3567CrossRefGoogle Scholar
  17. Wang ZL, Jiang T, Xu L (2017) Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39:9–23CrossRefGoogle Scholar
  18. Wirdatmadja SA, Barros MT, Koucheryavy Y, Jornet JM, Balasubramaniam S (2017) Wireless optogenetic nanonetworks for brain stimulation: device model and charging protocols. IEEE Trans NanoBiosci 16(8):859–872.CrossRefGoogle Scholar
  19. Wirdatmadja S, Johari P, Balasubramaniam S, Bae Y, Stachowiak MK, Jornet JM (2018) Light propagation analysis in nervous tissue for wireless optogenetic nanonetworks. In: Optogenetics and optical manipulation 2018, vol 10482. International Society for Optics and Photonics, p 104820R. https://doi.org/10.1117/12.2288786
  20. Zemelman BV, Lee GA, Ng M, Miesenböck G (2002) Selective photostimulation of genetically charged neurons. Neuron 33(1):15–22CrossRefGoogle Scholar
  21. Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8(8):577–581CrossRefGoogle Scholar
  22. Zorzos AN, Boyden ES, Fonstad CG (2010) Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt Lett 35(24):4133–4135CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Josep Miquel Jornet
    • 1
    Email author
  • Michal K. Stachowiak
    • 2
  • Sasitharan Balasubramaniam
    • 3
  1. 1.Ultra-broadband Nano Communication and Networking LaboratoryUniversity at Buffalo, The State University of New YorkBuffaloUSA
  2. 2.Department of Pathology and Anatomical SciencesUniversity at Buffalo, The State University of New YorkBuffaloUSA
  3. 3.Telecommunication Software and Systems GroupWaterford Institute of TechnologyWaterfordIreland

Section editors and affiliations

  • Adam Noel
    • 1
  1. 1.University of Warwick, UKWarwickUK