Encyclopedia of Wireless Networks

Living Edition
| Editors: Xuemin (Sherman) Shen, Xiaodong Lin, Kuan Zhang

Applications of Molecular Communication Systems

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-32903-1_222-1



A molecular communication system is defined as a system of bio-nanomachines that transmit and receive information using chemical signals or molecules. A bio-nanomachine that constitutes a molecular communication system is made of biomaterials with or without non-biological materials, approximately 1–100 μm in size, and capable of processing molecules. Examples of molecular communication systems are naturally occurring biological systems such as bacterial populations, epithelial sheets, and immune systems where biological cells represent bio-nanomachines. Examples of molecular communication systems also include artificial or synthetic biological systems designed for specific applications such as biomolecular sensing and targeted drug delivery.

Historical Background

Molecular communication was proposed as an unexplored research area at the intersection of communications engineering and biology...
This is a preview of subscription content, log in to check access.


  1. Abdi A, Einolghozati A, Fekri F (2017) Quantization in molecular signal sensing via biological agents. IEEE Trans Mol Biol Multi-Scale Commun 3(2):106–117CrossRefGoogle Scholar
  2. Akyildiz IF, Jornet JM (2010) The Internet of nano-things. IEEE Wirel Commun 17(6):58–63CrossRefGoogle Scholar
  3. Akyildiz IF, Pierobon M, Balasubramaniam S, Koucheryavy Y (2015) The Internet of bio-nano things. IEEE Commun Mag 53:32–40CrossRefGoogle Scholar
  4. Bush SF, Paluh JL, Piro G, Rao V, Prasad RV, Eckford A (2015) Defining communication at the bottom. IEEE Trans Mol Biol Multi-Scale Commun 1(1):90–96CrossRefGoogle Scholar
  5. Enomoto A, Moore M, Nakano T, Egashira R, Suda T, Kayasuga A, Kojima H, Sakakibara H, Oiwa K (2006) A molecular communication system using a network of cytoskeletal filaments. In: Proceedings of 2006 NSTI nanotechnology conference and trade show, vol 1, pp 725–728Google Scholar
  6. Farsad N, Eckford AW, Hiyama S, Moritani Y (2012) On-chip molecular communication: analysis and design. IEEE Trans Nanobiosci 11(3):304–314CrossRefGoogle Scholar
  7. Farsad N, Guo W, Eckford AW (2013) Tabletop molecular communication: text messages through chemical signals. PLOS ONE 8(12):e82935CrossRefGoogle Scholar
  8. Felicetti L, Femminella M, Reali G, Nakano T, Vasilakos AV (2014) TCP-like molecular communications. IEEE J Sel Areas Commun (JSAC) 32(12):2354–2367CrossRefGoogle Scholar
  9. Hiyama S, Inoue T, Shima T, Moritani Y, Suda T, Sutoh K (2008a) Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Small 4(4):410–415CrossRefGoogle Scholar
  10. Hiyama S, Moritani Y, Suda T (2008b) Molecular transport system in molecular communication. NTT DOCOMO Tech J 10(3):49–53Google Scholar
  11. Kadloor S, Adve RS, Eckford AW (2012) Molecular communication using Brownian motion with drift. IEEE Trans Nanobiosci 11(2):89–99CrossRefGoogle Scholar
  12. Kiourti A, Psathas KA, Nikita KS (2014) Implantable and ingestible medical devices with wireless telemetry functionalities: a review of current status and challenges. Bioelectromagnetics 35(1):1–15CrossRefGoogle Scholar
  13. Lio P, Balasubramaniam S (2012) Opportunistic routing through conjugation in bacteria communication nanonetwork. Nano Commun Netw 3(1):36–45CrossRefGoogle Scholar
  14. Mahfuz MU, Makrakis D, Mouftah HT (2010) On the characterization of binary concentration-encoded molecular communication in nanonetworks. Nano Commun Netw 1(4):289–300CrossRefGoogle Scholar
  15. Moritani Y, Nomura S-iM, Morita I, Akiyoshi K (2010) Direct integration of cell-free-synthesized connexin-43 into liposomes and hemichannel formation. FEBS J 277:3343–3352CrossRefGoogle Scholar
  16. Nakano T (2017) Molecular communication: a 10 year retrospective. IEEE Trans Mole Biol Multi-Scale Commun 3(2):71–78CrossRefGoogle Scholar
  17. Nakano T, Koujin T, Suda T, Hiraoka Y, Haraguchi T (2009) A locally induced increase in intracellular Ca2+ propagates cell-to-cell in the presence of plasma membrane ATPase inhibitors in non-excitable cells. FEBS Lett 583(22):3593–3599CrossRefGoogle Scholar
  18. Nakano T, Moore M, Wei F, Vasilakos AV, Shuai JW (2012) Molecular communication and networking: opportunities and challenges. IEEE Trans NanoBiosci 11(2):135–148CrossRefGoogle Scholar
  19. Nakano T, Kobayashi S, Suda T, Okaie Y, Hiraoka Y, Haraguchi T (2014) Externally controllable molecular communication. IEEE J Sel Areas Commun (JSAC) 32(12):2417–2431CrossRefGoogle Scholar
  20. Okaie Y, Nakano T, Hara T, Nishio S (2016) Target detection and tracking by bionanosensor networks. SpringerBriefs in computer science. Springer, SingaporeCrossRefGoogle Scholar
  21. Pierobon M, Akyildiz IF (2013) Capacity of a diffusion-based molecular communication system with channel memory and molecular noise. IEEE Trans Inf Theory 59(2):942–954MathSciNetCrossRefGoogle Scholar
  22. Rogers U, shung Koh M (2016) Parallel molecular distributed detection with brownian motion. IEEE Trans NanoBiosci 15(8):871–880CrossRefGoogle Scholar
  23. Tavakkoli N, Azmi P, Mokari N (2017) Performance evaluation and optimal detection of relay-assisted diffusion-based molecular communication with drift. IEEE Trans NanoBiosci 16(1):34–42CrossRefGoogle Scholar
  24. Wei G, Bogdan P, Marculescu R (2013) Bumpy rides: modeling the dynamics of chemotactic interacting bacteria. IEEE J Sel Areas Commun (JSAC) 31(12): 879–890CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Osaka UniversitySuitaJapan

Section editors and affiliations

  • Adam Noel
    • 1
  1. 1.University of Warwick, UKWarwickUK