Skip to main content

Data Analytics for Longitudinal Biomedical Data

  • Living reference work entry
  • First Online:
Encyclopedia of Wireless Networks
  • 142 Accesses


Data streams; Longitudinal data; Time series


Longitudinal data, a common data type in the biomedical area, refer to the data where each participant has repeatedly measured values on the same variable at two or more time points. Time series data have more time points for each participant, (e.g., hourly, daily, weekly and monthly, etc.) compared to regular longitudinal data. Data streams refer to the real-time (on-the-fly) millisecond data for each participant generated from wireless biomedical devices such as sensors. Broadly speaking, time series and data streams are all longitudinal data with the difference in the frequency of time points when collecting data for each participant.

Background for Longitudinal Biomedical Data Analytics

Common longitudinal data analytical models have been well studied in the statistical and biostatistical fields, ranging from common linear and nonlinear regression models (e.g., mixed or hierarchical models, mixture models) (McCulloch...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions


  • Bishop C (2006) Pattern recognition and machine learning. Springer, New York. (Online) ISBN: 13:9780387310732

    MATH  Google Scholar 

  • Carreiro S et al (2015) iMStrong: deployment of a biosensor system to detect cocaine use. J Med Syst 39(12):186. PMID:26490144

    Article  Google Scholar 

  • Carreiro S et al (2016) Wearable biosensors to detect physiologic change during opioid use. J Med Toxicol 12(3):255–262. PMID:27334894

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New York

    Book  Google Scholar 

  • Fang H (2017) MIFuzzy clustering for incomplete longitudinal data in smart health. Smart Health (Elsevier Journal) 1–2:50–65. PMID:28993813. PMCID:PMC5631546. Accessed 25 July 2019

    Article  Google Scholar 

  • Fang H, Zhang Z (2017) An enhanced visualization method to aid behavioral trajectory pattern recognition infrastructure for big longitudinal data. IEEE Trans Big Data. Accepted. NIHMSID:907513

    Article  Google Scholar 

  • Fang H et al (2009) Pattern recognition of longitudinal trial data with nonignorable missingness: an empirical case study. Int J Inf Technol Decis Mak 8(3):491–513. PMID:20336179

    Article  Google Scholar 

  • Fang H et al (2010) A new nonlinear classifier with a penalized signed fuzzy measure using effective genetic algorithm. Pattern Recogn 43(4):1393–1401. PMID:20300543

    Article  Google Scholar 

  • Fang H et al (2011) A new look at quantifying tobacco exposure during pregnancy using fuzzy clustering. Neurotoxicol Teratol 33(1):155–165. PMID:21256430

    Article  Google Scholar 

  • Fang H et al (2012) Detecting graded exposure effects: a report on an East Boston pregnancy cohort. Nicotine Tob Res Sep 14(9):1115–1120. PMID:22266824

    Article  Google Scholar 

  • Fang H et al (2015) A survey on big data research. IEEE Netw Mag 29(5):6–9. PMID:26504265

    Article  Google Scholar 

  • Gurugubelli VS et al (2019) Neuro-Fuzzy classifier for longitudinal behavioral intervention data. 2019 international conference on computing, networking and communications (ICNC): cloud computing and big data.

  • Hastie T et al (2009) The elements of statistical learning. Springer. (Online) ISBN: 978-0-387-84858-7

    Google Scholar 

  • James G et al (2013) An introduction to statistical learning. ISBN: 978-1-4614-7138-7 (online) and 978-1-4614-7137-0

    Google Scholar 

  • Kim SS et al (2017) Acculturation, depression, and smoking cessation: a trajectory pattern recognition approach. Tob Induc Dis. PMCID: PMC5525352

  • McCulloch CE et al (2008) Generalized, linear, and mixed models, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  • Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT Press, Cambridge, MA. ISBN: 978-0-262-01802-9

    MATH  Google Scholar 

  • Muthén B et al (2002) General growth mixture modeling for randomized preventive interventions. Biostatistics 3(4):459–475

    Article  Google Scholar 

  • Rajpurkar P et al (2017) CheXNet: radiologist-level pneumonia detection on chest X-Rays with deep learning. Accessed 25 July 2019

  • Skrondal A, Rabe-Hesketh S (2004) Generalized latent variable modeling: multilevel, longitudinal, and structural equation models. Chapman & Hall/CRC, New York

    Book  Google Scholar 

  • Zhang Z, Fang H (2016) Multiple- vs non- or single-imputation based fuzzy clustering for incomplete longitudinal behavioral intervention data. In: Proceedings of 2016 IEEE first conference on connected health: applications, systems and engineering technologies (NIH & NSF jointly sponsored).

  • Zhang Z et al (2016a) A new MI-based visualization aided validation index for mining big longitudinal web trial data. IEEE Access 4:2272–2280. NIHMSID:790905. PMID:27482473. PMCID:PMC4963037

    Article  Google Scholar 

  • Zhang Z et al (2016b) Multiple imputation based clustering validation (MIV) for big longitudinal trial data with missing values in eHealth. J Med Syst 40(6):1–9. PMID:27126063. PMCID:PMC4881752

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hua Fang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fang, H. (2020). Data Analytics for Longitudinal Biomedical Data. In: Shen, X., Lin, X., Zhang, K. (eds) Encyclopedia of Wireless Networks. Springer, Cham.

Download citation

  • DOI:

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32903-1

  • Online ISBN: 978-3-319-32903-1

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics