Skip to main content

Pulsed Electric Fields and Electroporation Technologies in Marine Macroalgae Biorefineries

  • Reference work entry
  • First Online:
Handbook of Electroporation

Abstract

New resources are needed to provide food, fuels, and chemicals for the growing economies and population while insuring minimum environmental impacts. Biomass will play a key role in the challenge of tackling those issues. Sustainable raw materials for the production of food, animal feed, chemicals, and biofuels such as biodiesel, biobutanol, and bioethanol can be obtained from algal biomass. The cultivation and conversion of biomass into products is known as biorefinery. In particular, marine macroalgae (so-called seaweeds) biomass is a promising feedstock for biorefineries because of their high growth rates and its potential cultivation on salt water, avoiding competition for freshwater and arable lands. In addition, dissolved inorganic nutrients like nitrogen, phosphorous, and carbon are taken up by macroalgae, helping to alleviate eutrophication in seas and oceans. Using biological, chemical, and engineering advances of the past decades, new technologies to provide cost-efficient cultivation, harvesting, extraction, and processing of sustainable biofuels have yet to be elaborated. Pulsed electric field and electroporation technologies can play a key role in that matter as it has been successfully used for biomass processing in various cases. This chapter provides insights of current and potential uses of pulsed electric fields, electroporation, and electrofusion technologies for macroalgae biorefineries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bentsen NS, Felby C (2012) Biomass for energy in the European Union – a review of bioenergy resource assessments. Biotechnol Biofuels 5:25. doi:10.1186/1754-6834-5-25

    Article  Google Scholar 

  • Fulton LM, Lynd LR, Körner A et al (2015) The need for biofuels as part of a low carbon energy future. Biofuels Bioprod Biorefin. doi:10.1002/bbb.1559

    Google Scholar 

  • Golberg A (2015) Environmental exergonomics for sustainable design and analysis of energy systems. Energy. doi:10.1016/j.energy.2015.05.053

    Google Scholar 

  • Golberg A, Liberzon A (2015) Modeling of smart mixing regimes to improve marine biorefinery productivity and energy efficiency. Algal Res 11:28–32. doi:10.1016/j.algal.2015.05.021

    Article  Google Scholar 

  • Golberg A, Vitkin E, Linshiz G et al (2014) Proposed design of distributed macroalgal biorefineries: thermodynamics, bioconversion technology, and sustainability implications for developing economies. Biofuels Bioprod Biorefin 8:67–82. doi:10.1002/bbb.1438

    Article  Google Scholar 

  • Golberg A, Sack M, Teissie J et al (2016) Energy efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnol Biofuels 9:1

    Article  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ et al (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726. doi:10.1098/rsif.2009.0322

    Article  Google Scholar 

  • Gupta V, Kumari P, Reddy C (2015) Development and characterization of somatic hybrids of ulva reticulata Forsskål (×) Monostroma oxyspermum (Kutz.) Doty. Front Plant Sci 6:3. doi:10.3389/fpls.2015.00003

    Google Scholar 

  • Harnedy PA, FitzGerald RJ (2011) Bioactive proteins, peptides, and amino acids from macroalgae. J Phycol 47:218–232. doi:10.1111/j.1529-8817.2011.00969.x

    Article  Google Scholar 

  • Huang X, Weber JC, Hinson TK et al (1996) Transient expression of the GUS reporter gene in the protoplasts and partially digested cells of Ulva lactuca L. (Chlorophyta). Bot Mar. doi:10.1515/botm.1996.39.1-6.467

    Google Scholar 

  • Joubert Y, Fleurence J (2007) Simultaneous extraction of proteins and DNA by an enzymatic treatment of the cell wall of Palmaria palmata (Rhodophyta). J Appl Phycol 20:55–61. doi:10.1007/s10811-007-9180-9

    Article  Google Scholar 

  • Lehahn Y, Ingle KN, Golberg A (2016) Global potential of offshore and shallow waters macroalgal biorefineries to provide for food, chemicals and energy: feasibility and sustainability. Algal Res 17:150–160. doi:10.1016/j.algal.2016.03.031

    Article  Google Scholar 

  • Mei K, Su-juan W, Yao L et al (1998) Transient expression of exogenous gus gene in Porphyra yezoensis (Rhodophyta). Chinese J Oceanol Limnol 16:56–61. doi:10.1007/BF02849081

    Article  Google Scholar 

  • Mizukami Y, Okauchi M, Kito H (1992) Effects of cell wall-lytic enzymes on the electrofusion efficiency of protoplasts from Porphyra yezoensis. Aquaculture 108:193–205. doi:10.1016/0044-8486(92)90106-U

    Article  Google Scholar 

  • Mizukami Y, Hado M, Kito H et al (2004) Reporter gene introduction and transient expression in protoplasts of Porphyra yezoensis. J Appl Phycol 16:23–29. doi:10.1023/B:JAPH.0000019050.54703.14

    Article  Google Scholar 

  • Polikovsky M, Fernand F, Sack M et al (2016) Towards marine biorefineries: Selective proteins extractions from marine macroalgae Ulva with pulsed electric fields. Innovative Food Sci Emerg Technol. doi:10.1016/j.ifset.2016.03.013

    Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  Google Scholar 

  • Reddy CRK, Saito M, Migita S, Fujita Y (1990) Intrageneric fusions Ulva and Porphyra of isolated protoplasts from by electrofusion method. Bull Fac Fish Nagasaki Univ 68:21–27

    Google Scholar 

  • Reddy CRK, Iima M, Fujita Y (1992) Induction of fast-growing and morphologically different strains through intergeneric protoplast fusions of Ulva and Enteromorpha (Ulvales, Chlorophyta). J Appl Phycol 4:57–65. doi:10.1007/BF00003961

    Article  Google Scholar 

  • Roesijadi G, Jones SBB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. Department energy under contract DE-AC05-76RL01830 by Pacific Northwest Natural Lab. United States Department of Energy, Washington, DC, pp 1–50

    Book  Google Scholar 

  • Sack M, Sigler J, Frenzel S et al (2010) Research on industrial-scale electroporation devices fostering the extraction of substances from biological tissue. Food Eng Rev 2:147–156. doi:10.1007/s12393-010-9017-1

    Article  Google Scholar 

  • Stice C (2014) WhooPea: plant sources are changing the protein landscape. Luxresearch Inc. Boston, USA

    Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443. doi:10.1038/nrg2336

    Article  Google Scholar 

  • Van der Burg S, Stulver M, Veenstra F et al (2013) A triple P review of the feasibility of sustainable offshore seaweed production in the North Sea. LEI Wageningen UR, Den Haag

    Google Scholar 

  • Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149. doi:10.1016/j.biortech.2012.10.135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Golberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Robin, A., Golberg, A. (2017). Pulsed Electric Fields and Electroporation Technologies in Marine Macroalgae Biorefineries. In: Miklavčič, D. (eds) Handbook of Electroporation. Springer, Cham. https://doi.org/10.1007/978-3-319-32886-7_218

Download citation

Publish with us

Policies and ethics