Advertisement

Protist Diversity and Eukaryote Phylogeny

  • Alastair G. B. Simpson
  • Claudio H. Slamovits
  • John M. Archibald
Living reference work entry

Abstract

The last quarter century has seen dramatic changes in our understanding of the phylogenetic relationships among protist groups and their evolutionary history. This is due in large part to the maturation of molecular phylogenetics, to genomics and transcriptomics becoming widely used tools, and to ongoing and accelerating progress in characterizing the major lineages of protists in the biosphere. As an introduction to the Handbook of the Protists, Second Edition, we provide a brief account of the diversity of protistan eukaryotes, set within the context of eukaryote phylogeny as currently understood. Most protist lineages can be assigned to one of a handful of major groupings (“supergroups”). These include Archaeplastida (which also includes land plants), Sar (including Stramenopiles/Heterokonta, Alveolata, and Rhizaria), Discoba, Metamonada, Amoebozoa, and Obazoa. This last group in turn contains Opisthokonta, the clade that includes both animals and fungi. Many, but not all, of the deeper-level phylogenetic relationships within these groups are now resolved. Additional well-known groups that are related to Archaeplastida and/or Sar include Cryptista (cryptophyte algae and their relatives), Haptophyta, and Centrohelida, among others. Another set of protist lineages are probably most closely related to Amoebozoa and Obazoa, including Ancyromonadida and perhaps Malawimonadidae (though the latter may well be more closely related to Metamonada). The bulk of the known diversity of protists is covered in the following 43 chapters of the Handbook of the Protists; here we also briefly introduce those lineages that are not covered in later chapters.

The Handbook is both a community resource and a guidebook for future research by scientists working in diverse areas, including protistology, phycology, microbial ecology, cell biology, and evolutionary genomics.

Keywords

Algae Alveolata Amoebozoa Archaeplastida Biodiversity Discoba Eukaryote Metamonada Obazoa Opisthokonta Phylogeny Protist Protozoa Rhizaria Sar Stramenopiles 

Notes

Acknowledgments

We gratefully acknowledge valuable comments and suggestions from Martha Powell (University of Alabama), Matthew Brown (Mississippi State University), Fred Spiegel (University of Arkansas), Fabien Burki (Uppsala University), David Bass (Centre for Environment, Fisheries, and Aquaculture Science, UK), Chris Lane (University of Rhode Island), Michelle Leger (Institute of Evolutionary Biology, Barcelona), and Sergio Muñoz-Gómez and Yana Eglit (both Dalhousie University).

References

  1. Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukes, J., Bass, D., Bowser, S. S., Brown, M. W., Burki, F., Dunthorn, M., Hampl, V., Heiss, A. A., Hoppenrath, M., Lara, E., le Gall, L., Lynn, D. H., McManus, H., Mitchell, E. A. D., Mozley-Stanridge, S. E., Parfrey, L. W., Pawlowski, J., Rueckert, S., Shadwick, L., Schoch, C. L., Smirnov, A., & Spiegel, F. W. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59, 429–493.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Archibald, J. M. (2015). Genomic perspectives on the birth and spread of plastids. Proceedings of the National Academy of Sciences USA, 112, 10147–10153.CrossRefGoogle Scholar
  3. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I., & Doolittle, W. F. (2000). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science, 290, 972–977.CrossRefPubMedGoogle Scholar
  4. Bass, D., Chao, E. E., Nikolaev, S., Yabuki, A., Ishida, K., Berney, C., Pakzad, U., Wylezich, C., & Cavalier-Smith, T. (2009). Phylogeny of novel naked filose and reticulose Cercozoa: Granofilosea cl. n. and Proteomyxidea revised. Protist, 160, 75–109.CrossRefPubMedGoogle Scholar
  5. Berney, C., Romac, S., Mahe, F., Santini, S., Siano, R., & Bass, D. (2013). Vampires in the oceans: Predatory cercozoan amoebae in marine habitats. The ISME Journal, 7, 2387–2399.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berney, C., Geisen, S., Van Wichelen, J., Nitsche, F., Vanormelingen, P., Bonkowski, M., & Bass, D. (2015). Expansion of the ‘reticulosphere’: Diversity of novel branching and network-forming amoebae helps to define Variosea (Amoebozoa). Protist, 166, 271–295.CrossRefPubMedGoogle Scholar
  7. Brown, M. W., Spiegel, F. W., & Silberman, J. D. (2009). Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Molecular Biology and Evolution, 26, 2699–2709.CrossRefPubMedGoogle Scholar
  8. Brown, M. W., Kolisko, M., Silberman, J. D., & Roger, A. J. (2012). Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Current Biology, 22, 1123–1127.CrossRefPubMedGoogle Scholar
  9. Brown, M. W., Sharpe, S. C., Silberman, J. D., Heiss, A. A., Lang, B. F., Simpson, A. G. B., & Roger, A. J. (2013). Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proceedings of the Royal Society of London B, 280, 20131755.CrossRefGoogle Scholar
  10. Burki, F. (2014). The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harbour Perspectives in Biology, 6, a016147.CrossRefGoogle Scholar
  11. Burki, F., & Keeling, P. J. (2014). Rhizaria. Current Biology, 24, R103–R107.CrossRefPubMedGoogle Scholar
  12. Burki, F., Shalchian-Tabrizi, K., Minge, M., Skjaeveland, A., Nikolaev, S. I., Jakobsen, K. S., & Pawlowski, J. (2007). Phylogenomics reshuffles the eukaryotic supergroups. PloS One, 2, e790.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Burki, F., Kaplan, M., Tikhonenkov, D. V., Zlatogursky, V., Minh, B. Q., Radaykina, L. V., Smirnov, A., Mylnikov, A. P., & Keeling, P. J. (2016). Untangling the early diversification of eukaryotes: A phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proceedings of the Royal Society B, 283, 20152802.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cavalier-Smith, T. (1987). The origin of Fungi and pseudofungi. In A. D. M. Rayner (Ed.), Evolutionary biology of the fungi (pp. 339–353). Cambridge: Cambridge University Press.Google Scholar
  15. Cavalier-Smith, T. (2010). Origin of the cell nucleus, mitosis and sex: Roles of intracellular coevolution. Biology Direct, 5, 7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cavalier-Smith, T. (2013). Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. European Journal of Protistology, 49, 115–178.CrossRefPubMedGoogle Scholar
  17. Cavalier-Smith, T., & Scoble, J. M. (2013). Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes. European Journal of Protistology, 49, 328–353.CrossRefPubMedGoogle Scholar
  18. Cavalier-Smith, T., Chao, E. E., Snell, E. A., Berney, C., Fiore-Donno, A. M., & Lewis, R. (2014). Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Molecular Phylogenetics and Evolution, 81, 71–85.CrossRefPubMedGoogle Scholar
  19. Cavalier-Smith, T., Chao, E. E., & Lewis, R. (2015). Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. Molecular Phylogenetics and Evolution, 93, 331–362.CrossRefPubMedGoogle Scholar
  20. Cavalier-Smith, T., Chao, E. E., & Lewis, R. (2016). 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Molecular Phylogenetics and Evolution, 99, 275–296.CrossRefPubMedGoogle Scholar
  21. David, V., & Archibald, J. M. (2016). Evolution: Plumbing the depths of diplonemid diversity. Current Biology, 26, R1272–R1296.CrossRefGoogle Scholar
  22. de Mendoza, A., Sebé-Pedrós, A., & Ruiz-Trillo, I. (2014). The evolution of the GPCR signaling system in eukaryotes: Modularity, conservation, and the transition to metazoan multicellularity. Genome Biology and Evolution, 6, 606–619.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Derelle, R., & Lang, B. F. (2012). Rooting the eukaryote tree with mitochondrial and bacterial proteins. Molecular Biology and Evolution, 29, 1277–1289.CrossRefPubMedGoogle Scholar
  24. Derelle, R., Torruella, G., Klimes, V., Brinkmann, H., Kim, E., Vlček, Č., Lang, B. F., & Eliás, M. (2015). Bacterial proteins pinpoint a single eukaryotic root. Proceedings of the National Academy of Sciences USA, 112, 693–699.CrossRefGoogle Scholar
  25. Derelle, R., López-García, P., Timpano, H., & Moreira, D. (2016). A phylogenomic framework to study the diversity and evolution of stramenopiles (=heterokonts). Molecular Biology and Evolution, 33, 2890–2898.CrossRefPubMedGoogle Scholar
  26. Flegontova, O., Flegontov, P., Malviya, S., Audic, S., Wincker, P., de Vargas, C., Bowler, C., Lukeš, J., & Horák, A. (2016). Extreme diversity of diplonemid eukaryotes in the ocean. Current Biology, 26, 3060–3065.CrossRefPubMedGoogle Scholar
  27. Foissner, I., & Foissner, W. (1993). Revision of the family Spironemidae Doflein (Protista, Hemimastigophora), with description of 2 new species, Spironema terricola n. sp. and Stereonema geiseri n. g., n. sp. Journal of Eukaryotic Microbiology, 40, 422–438.CrossRefGoogle Scholar
  28. Gawryluk, R. M., del Campo, J., Okamoto, N., Strassert, J. F., Lukeš, J., Richards, T. A., Worden, A. Z., Santoro, A. E., & Keeling, P. J. (2016). Morphological identification and single-cell genomics of marine diplonemids. Current Biology, 26, 3053–3059.CrossRefPubMedGoogle Scholar
  29. Glockling, S. L., Marshall, W. L., & Gleason, F. H. (2013). Phylogenetic interpretations and ecological potentials of the Mesomycetozoea (Ichthyosporea). Fungal Ecology, 6, 237–247.CrossRefGoogle Scholar
  30. Glücksman, E., Snell, E. A., Berney, C., Chao, E. E., Bass, D., & Cavalier-Smith, T. (2011). The novel marine gliding zooflagellate genus Mantamonas (Mantamonadida ord. n.: Apusozoa). Protist, 162, 207–221.CrossRefPubMedGoogle Scholar
  31. Hackett, J. D., Yoon, H. S., Li, S., Reyes-Prieto, A., Rümmele, S. E., & Bhattacharya, D. (2007). Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with chromalveolates. Molecular Biology and Evolution, 24, 1702–1713.CrossRefPubMedGoogle Scholar
  32. Hampl, V., Hug, L., Leigh, J., Dacks, J. B., Lang, B. F., Simpson, A. G. B., & Roger, A. J. (2009). Taxon-rich phylogenomic analyses support the monophyly of Excavata and robustly resolve relationships among eukaryotic “supergroups”. Proceedings of the National Academy of Sciences USA, 106, 3859–3864.CrossRefGoogle Scholar
  33. Hartikainen, H., Stentiford, G. D., Bateman, K. S., Berney, C., Feist, S. W., Longshaw, M., Okamura, B., Stone, D., Ward, G., Wood, C., & Bass, D. (2014). Mikrocytids are a broadly distributed and divergent radiation of parasites in aquatic invertebrates. Current Biology, 24, 807–812.CrossRefPubMedGoogle Scholar
  34. He, D., Fiz-Palacios, O., Fu, C., Fehling, J., Tsai, C. C., & Baldauf, S. L. (2014). An alternative root for the eukaryote tree of life. Current Biology, 24, 465–470.CrossRefPubMedGoogle Scholar
  35. Heiss, A. A., Walker, G., & Simpson, A. G. B. (2013). The microtubular cytoskeleton of the apusomonad Thecamonas, a sister lineage to the opisthokonts. Protist, 164, 598–621.CrossRefPubMedGoogle Scholar
  36. Hess, S., Sausen, N., & Melkonian, M. (2012). Shedding light on vampires: The phylogeny of vampyrellid amoebae revisited. PloS One, 7, e31165.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hodges, M. E., Scheumann, N., Wickstead, B., Langdale, J. A., & Gull, K. (2010). Reconstructing the evolutionary history of the centriole from protein components. Journal of Cell Science, 123, 1407–1413.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Howe, A. T., Bass, D., Scoble, J. M., Lewis, R., Vickerman, K., Arndt, H., & Cavalier-Smith, T. (2011). Novel cultured protists identify deep-branching environmental DNA clades of Cercozoa: New genera Tremula, Micrometopion, Minimassisteria, Nudifila, Peregrinia. Protist, 162, 332–372.CrossRefPubMedGoogle Scholar
  39. James, T. Y., & Berbee, M. L. (2012). No jacket required – New fungal lineage defies dress code. BioEssays, 34, 94–102.CrossRefPubMedGoogle Scholar
  40. Janouškovec, J., Tikhonenkov, D. V., Burki, F., Howe, A. T., Kolísko, M., Mylnikov, A. P., & Keeling, P. J. (2015). Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proceedings of the National Academy of Sciences USA, 112, 10200–10207.CrossRefGoogle Scholar
  41. Kamikawa, R., Kolisko, M., Nishimura, Y., Yabuki, A., Brown, M. W., Ishikawa, S. A., Ishida, K., Roger, A. J., Hashimoto, T., & Inagaki, Y. (2014). Gene content evolution in discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. Genome Biology and Evolution, 6, 306–315.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Karpov, S. A., Mamkaeva, M. A., Aleoshin, V. V., Nassonova, E., Lilje, O., & Gleason, F. H. (2014). Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Frontiers in Microbiology, 5, 112.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Katz, L. A., Grant, J. R., Parfrey, L. W., & Burleigh, J. G. (2012). Turning the crown upside down: Gene tree parsimony roots the eukaryotic tree of life. Systematic Biology, 61, 653–660.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Keeling, P. J. (2013). The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annual Review of Plant Biology, 64, 583–607.CrossRefPubMedGoogle Scholar
  45. Kim, E., Harrison, J. W., Sudek, S., Jones, M. D., Wilcox, H. M., Richards, T. A., Worden, A. Z., & Archibald, J. M. (2011). Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proceedings of the National Academy of Sciences USA, 108, 1496–1500.CrossRefGoogle Scholar
  46. Kosakyan, A., Gomaa, F., Lara, E., & Lahr, D. J. (2016). Current and future perspectives on the systematics, taxonomy and nomenclature of testate amoebae. European Journal of Protistology, 55, 105–117.CrossRefPubMedGoogle Scholar
  47. Krabberød, A. K., Orr, R., Bråte, J., Kristensen, T., Bjørklund, K. R., & Shalchian-Tabrizi, K. (2017). Single cell transcriptomics, mega-phylogeny and the genetic basis of morphological innovations in Rhizaria. Molecular Biology and Evolution. doi:10.1093/molbev/msx075.Google Scholar
  48. Lang, B. F., Burger, G., O’Kelly, C. J., Cedergren, R., Golding, G. B., Lemieux, C., Sankoff, D., Turmel, M., & Gray, M. W. (1997). An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature, 387, 493–497.CrossRefPubMedGoogle Scholar
  49. Leger, M. M., Kolisko, M., Kamikawa, R., Stairs, C. W., Kume, K., Čepicka, I., Silberman, J. D., Andersson, J. O., Xu, F., Yabuki, A., Eme, L., Zhang, Q., Takishita, K., Inagaki, Y., Simpson, A. G. B., Hashimoto, T., & Roger, A. J. (2017). Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nature Ecology and Evolution, 1, 0092.CrossRefPubMedGoogle Scholar
  50. Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F., & De Clerck, O. (2012). Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31, 1–46.CrossRefGoogle Scholar
  51. Margulis, L., Corliss, J. O., Melkonian, M., & Chapman, D. J. (Eds.). (1990). Handbook of Protoctista. Sudbury: Jones and Bartlett Publishers, Inc.Google Scholar
  52. Massana, R., del Campo, J., Sieracki, M. E., Audic, S., & Logares, R. (2014). Exploring the uncultured microeukaryote majority in the oceans: Reevaluation of ribogroups within stramenopiles. ISME Journal, 8, 854–866.CrossRefPubMedGoogle Scholar
  53. Moore, R. B., Oborník, M., Janouškovec, J., Chrudimský, T., Vancová, M., Green, D. H., Wright, S. W., Davies, N. W., Bolch, C. J., Heimann, K., Slapeta, J., Hoegh-Guldberg, O., Logsdon, J. M., & Carter, D. A. (2008). A photosynthetic alveolate closely related to apicomplexan parasites. Nature, 451, 959–963.CrossRefPubMedGoogle Scholar
  54. Moreira, D., & López-García, P. (2014). The rise and fall of picobiliphytes: How assumed autotrophs turned out to be heterotrophs. BioEssays, 36, 468–474.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Moreira, S., Valach, M., Aoulas-Aissa, M., Otto, C., & Burger, G. (2016). Novel modes of RNA editing in mitochondria. Nucleic Acids Research, 44, 4907–4919.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nikolaev, S. I., Berney, C., Fahrni, J. F., Bolivar, I., Polet, S., Mylnikov, A. P., Aleshin, V. V., Petrov, N. B., & Pawlowski, J. (2004). The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proceedings of the National Academy of Sciences USA, 101, 8066–8071.CrossRefGoogle Scholar
  57. Nishimura, Y., Tanifuji, G., Kamikawa, R., Yabuki, A., Hashimoto, T., & Inagaki, Y. (2016). Mitochondrial genome of Palpitomonas bilix: Derived genome structure and ancestral system for cytochrome c maturation. Genome Biology and Evolution, 13, 3090–3098.CrossRefGoogle Scholar
  58. Not, F., Valentin, K., Romari, K., Lovejoy, C., Massana, R., Töbe, K., Vaulot, D., & Medlin, L. K. (2007). Picobiliphytes: A marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science, 315, 253–255.CrossRefPubMedGoogle Scholar
  59. Nowack, E. C. M. (2014). Paulinella chromatophora − Rethinking the transition from endosymbiont to organelle. Acta Societatis Botanicorum Poloniae, 83, 387–397.CrossRefGoogle Scholar
  60. O’Kelly, C. J., & Nerad, T. A. (1999). Malawimonas jakobiformis n. gen., n. sp. (Malawimonadidae n. fam.): A Jakoba-like heterotrophic nanoflagellate with discoidal mitochondrial cristae. Journal of Eukaryotic Microbiology, 46, 522–531.CrossRefGoogle Scholar
  61. Park, J. S., & Simpson, A. G. B. (2015). Diversity of heterotrophic protists from extremely hypersaline habitats. Protist, 166, 422–437.CrossRefPubMedGoogle Scholar
  62. Pawlowski, J., Holzmann, M., & Tyszka, J. (2013). New supraordinal classification of Foraminifera: Molecules meet morphology. Marine Micropaleontology, 100, 1–10.CrossRefGoogle Scholar
  63. Price, D. C., Chan, C. X., Yoon, H. S., Yang, E. C., Qiu, H., Weber, A. P., Schwacke, R., Gross, J., Blouin, N. A., Lane, C., Reyes-Prieto, A., Durnford, D. G., Neilson, J. A., Lang, B. F., Burger, G., Steiner, J. M., Löffelhardt, W., Meuser, J. E., Posewitz, M. C., Ball, S., Arias, M. C., Henrissat, B., Coutinho, P. M., Rensing, S. A., Symeonidi, A., Doddapaneni, H., Green, B. R., Rajah, V. D., Boore, J., & Bhattacharya, D. (2012). Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science, 335, 843–847.CrossRefPubMedGoogle Scholar
  64. Ramesh, M. A., Malik, S.-B., & Logsdon, J. M. (2005). A phylogenomic inventory of meiotic genes: Evidence for sex in Giardia and an early eukaryotic origin of meiosis. Current Biology, 15, 185–191.PubMedGoogle Scholar
  65. Reyes-Prieto, A., Weber, A. P., & Bhattacharya, D. (2007). The origin and establishment of the plastid in algae and plants. Annual Review of Genetics, 41, 147–168.CrossRefPubMedGoogle Scholar
  66. Riisberg, I., Orr, R. J. S., Kluge, R., Shalchian-Tabrizi, K., Bowers, H. A., Patil, V., Edvardsen, B., & Jakobsen, K. S. (2009). Seven gene phylogeny of heterokonts. Protist, 160, 191–204.CrossRefPubMedGoogle Scholar
  67. Rodríguez-Ezpeleta, N., Brinkmann, H., Burger, G., Roger, A. J., Gray, M. W., Philippe, H., & Lang, B. F. (2007). Toward resolving the eukaryotic tree: The phylogenetic positions of jakobids and cercozoans. Current Biology, 17, 1420–1425.CrossRefPubMedGoogle Scholar
  68. Seenivasan, R., Sausen, N., Medlin, L. K., & Melkonian, M. (2013). Picomonas judraskeda gen. et sp. nov.: The first identified member of the Picozoa phylum nov., a widespread group of picoeukaryotes, formerly known as ‘picobiliphytes’. PloS One, 8, e59565.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shadwick, L., Spiegel, F. W., Shadwick, J. D. L., Brown, M. W., & Silberman, J. D. (2009). Eumycetozoa=Amoebozoa?: SSUrDNA phylogeny of protosteloid slime molds and its significance for the amoebozoan supergroup. PloS One, 4, e6754.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Shalchian-Tabrizi, K., Eikrem, W., Klaveness, D., Vaulot, D., Minge, M. A., Le Gall, F., Romari, K., Throndsen, J., Botnen, A., Massana, R., Thomsen, H. A., & Jakobsen, K. S. (2006). Telonemia, a new protist phylum with affinity to chromist lineages. Proceedings of the Royal Society B, 273, 1833–1842.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Shiratori, T., Nakayama, T., & Ishida, K. (2015). A new deep-branching stramenopile, Platysulcus tardus gen. nov., sp. nov. Protist, 166, 337–348.CrossRefPubMedGoogle Scholar
  72. Sierra, R., Matz, M. V., Aglyamova, G., Pillet, L., Decelle, J., Not, F., de Vargas, C., & Pawlowski, J. (2013). Deep relationships of Rhizaria revealed by phylogenomics: A farewell to Haeckel’s Radiolaria. Molecular Phylogenetics and Evolution, 67, 53–59.CrossRefPubMedGoogle Scholar
  73. Sierra, R., Cañas-Duarte, S. J., Burki, F., Schwelm, A., Fogelqvist, J., Dixelius, C., González-García, L. N., Gile, G. H., Slamovits, C. H., Klopp, C., Restrepo, S., Arzul, I., & Pawlowski, J. (2016). Evolutionary origins of rhizarian parasites. Molecular Biology and Evolution, 33, 980–983.CrossRefPubMedGoogle Scholar
  74. Simpson, A. G. B. (2003). Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). International Journal of Systematic and Evolutionary Microbiology, 53, 1759–1777.CrossRefPubMedGoogle Scholar
  75. Simpson, A. G. B., & Eglit, Y. (2016). Protist diversification. In R. M. Kliman (Ed.), Encyclopedia of evolutionary biology, volume 3 (pp. 344–360). Amsterdam: Elsevier.CrossRefGoogle Scholar
  76. Taylor, J. W., & Berbee, M. L. (2014). Fungi from PCR to genomics: The spreading revolution in evolutionary biology. In D. J. McLaughlin & J. W. Spatafora (Eds.), The Mycota, volume 7A (pp. 1–18). Berlin: Springer.Google Scholar
  77. Tice, A. K., Shadwick, L. L., Fiore-Donno, A. M., Geisen, S., Kang, S., Schuler, G. A., Spiegel, F. W., Wilkinson, K., Bonkowski, M., Dumack, K., Lahr, D. J. G., Voelcker, E., Clauss, S., Zhang, J., & Brown, M. W. (2016). Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida, Amoebozoa) and identification of a novel life cycle type within the group. Biology Direct, 11, 69.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tikhonenkov, D. V., Janouškovec, J., Mylnikov, A. P., Mikhailov, K. V., Simdyanov, T. G., Aleoshin, V. V., & Keeling, P. J. (2014). Description of Colponema vietnamica sp.n. And Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes. PloS One, 16, e95467.Google Scholar
  79. Torruella, G., de Mendoza, A., Grau-Bové, X., Antó, M., Chaplin, M. A., del Campo, J., Eme, L., Pérez-Cordón, G., Whipps, C. M., Nichols, K. M., Paley, R., Roger, A. J., Sitjà-Bobadilla, A., Donachie, S., & Ruiz-Trillo, I. (2015). Phylogenomics reveals convergent evolution of lifestyles in close relatives of animals and fungi. Current Biology, 25, 2404–2410.CrossRefPubMedGoogle Scholar
  80. Van de Peer, Y., & De Wachter, R. (1997). Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA. Journal of Molecular Evolution, 45, 619–630.CrossRefGoogle Scholar
  81. Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S., Barker, M. S., Burleigh, J. G., Gitzendanner, M. A., Ruhfel, B. R., Wafula, E., Der, J. P., Graham, S. W., Mathews, S., Melkonian, M., Soltis, D. E., Soltis, P. S., Miles, N. W., Rothfels, C. J., Pokorny, L., Shaw, A. J., DeGironimo, L., Stevenson, D. W., Surek, B., Villarreal, J. C., Roure, B., Philippe, H., dePamphilis, C. W., Chen, T., Deyholos, M. K., Baucom, R. S., Kutchan, T. M., Augustin, M. M., Wang, J., Zhang, Y., Tian, Z., Yan, Z., Wu, X., Sun, X., Wong, G. K., & Leebens-Mack, J. (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences USA, 111, 4859–4868.CrossRefGoogle Scholar
  82. Wideman, J. G., & Muñoz-Gómez, S. A. (2016). The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology. Biochimica et Biophysica Acta, 1861, 900–912.CrossRefPubMedGoogle Scholar
  83. Worden, A. Z., Follows, M. J., Giovannoni, S. J., Wilken, S., Zimmerman, A. E., & Keeling, P. J. (2015). Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science, 347, 1257594.CrossRefPubMedGoogle Scholar
  84. Yabuki, A., Inagaki, Y., & Ishida, K. (2010). Palpitomonas bilix gen. et sp nov.: A novel deep-branching heterotroph possibly related to Archaeplastida or Hacrobia. Protist, 161, 523–538.CrossRefPubMedGoogle Scholar
  85. Yabuki, A., Nakayama, T., Yubuki, N., Hashimoto, T., Ishida, K., & Inagaki, Y. (2011). Tsukubamonas globosa n. gen., n. sp., a novel excavate flagellate possibly holding a key for the early evolution in “Discoba”. Journal of Eukaryotic Microbiology, 58, 319–331.CrossRefPubMedGoogle Scholar
  86. Yabuki, A., Eikrem, W., Takishita, K., & Patterson, D. J. (2013a). Fine structure of Telonema subtilis Griessmann, 1913: A flagellate with a unique cytoskeletal structure among eukaryotes. Protist, 164, 556–569.CrossRefPubMedGoogle Scholar
  87. Yabuki, A., Ishida, K., & Cavalier-Smith, T. (2013b). Rigifila ramosa n. gen., n. sp., a filose apusozoan with a distinctive pellicle, is related to Micronuclearia. Protist, 164, 75–88.Google Scholar
  88. Yabuki, A., Kamikawa, R., Ishikawa, S. A., Kolisko, M., Kim, E., Tanabe, A. S., Kume, K., Ishida, K., & Inagaki, Y. (2014). Palpitomonas bilix represents a basal cryptist lineage: Insight into the character evolution in Cryptista. Scientific Reports, 4, 4641.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yubuki, N., & Leander, B. S. (2013). Evolution of microtubule organizing centers across the tree of eukaryotes. Plant Journal, 75, 230–244.CrossRefPubMedGoogle Scholar
  90. Yubuki, N., Pánek, T., Yabuki, A., Čepička, I., Takishita, K., Inagaki, Y., & Leander, B. S. (2015). Morphological identities of two different marine stramenopile environmental sequence clades: Bicosoeca kenaiensis (Hilliard, 1971) and Cantina marsupialis (Larsen and Patterson, 1990) gen. nov., comb. nov. Journal of Eukaryotic Microbiology, 62, 532–542.CrossRefPubMedGoogle Scholar
  91. Yubuki, N., Zadrobílková, E., & Čepička, I. (2017). Ultrastructure and molecular phylogeny of Iotanema spirale gen. nov. et sp. nov., a new lineage of endobiotic Fornicata with strikingly simplified ultrastructure. Journal of Eukaryotic Microbiology. doi:10.1111/jeu.12376.Google Scholar
  92. Zhao, S., Burki, F., Bråte, J., Keeling, P. J., Klaveness, D., & Shalchian-Tabrizi, K. (2012). Collodictyon – An ancient lineage in the tree of eukaryotes. Molecular Biology and Evolution, 29, 1557–1568.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alastair G. B. Simpson
    • 1
  • Claudio H. Slamovits
    • 2
  • John M. Archibald
    • 2
  1. 1.Department of BiologyDalhousie UniversityHalifaxCanada
  2. 2.Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada

Personalised recommendations