• Steven L. StephensonEmail author
  • Martin Schnittler
Living reference work entry


The myxomycetes (class Myxogastria), also commonly known as plasmodial slime molds or acellular slime molds, are the most species-rich group within the Amoebozoa, with approximately 1,000 morphologically recognizable species having been described. These organisms are free-living predators of bacteria and other eukaryotic protists. Myxomycetes have been recorded from every terrestrial habitat investigated to date. The two trophic stages (amoeboflagellates and plasmodia) in the life cycle are usually cryptic, but the fruiting bodies are often large enough to be observed directly in nature. Fruiting bodies release airborne spores that are dispersed by air or, more rarely, animal vectors. Myxomycetes are associated with a wide variety of different microhabitats, the most important of which are coarse woody debris, ground litter, aerial litter, and the bark surface of living trees. Specimens can be obtained as fruiting bodies that have developed in the field under natural conditions or cultured in the laboratory. A substantial body of data on the worldwide biodiversity and distribution of myxomycetes has been assembled over the past 200 years, but there is a relative lack of molecular data, since myxomycetes are neither pathogenic nor of economic importance. However, recent studies have produced the first, albeit still incomplete, molecular phylogenies of the group. Moreover, there appears to be a much higher level of diversity on the molecular level than reflected in the number of morphospecies, with the latter often consisting of reproductively isolated populations which can be considered as biospecies.


Amoebozoa Biodiversity Biospecies Ecology Introns Plasmodial slime molds Soil microbiology Molecular phylogeny 



The first author gratefully acknowledges the support provided by a number of grants from the National Science Foundation and the information gained from numerous colleagues over his career. Angela Mele provided the drawing used as the basis for Fig. 2 and Randy Darrah helped modify this and several of the other figures. The second author would like to thank a number of colleagues, especially Y. K. Novozhilov, D. Wrigley de Basanta, C. Lado, D. Leontyev and several former Ph.D. students, especially Y. Feng, N. Dagamac and J. Tesmer, for fruitful discussions and collaborations.


  1. Adl, S. M., Simpson, A. G., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., et al. (2012). The revised classification of Eukaryotes. Journal of Eukaryotic Microbiology, 59, 429–493.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adl, S. M., Habura, A., & Eglit, Y. (2014). Amplification primers of SSU rDNA for soil protists. Soil Biology & Biochemistry, 69, 328–342.CrossRefGoogle Scholar
  3. Aguilar, M., Fiore-Donno, A.-M., Lado, C., & Cavalier-Smith, T. (2013). Using environmental niche models to test the ‘everything is everywhere’ hypothesis for Badhamia. The ISME Journal, 8, 737–745.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alexopoulos, C. J. (1960). Gross morphology of the plasmodium and its possible significance in the myxomycetes. Mycologia, 52, 1–20.CrossRefGoogle Scholar
  5. Alexopoulos, C. J. (1963). The myxomycetes II. Botanical Review, 29, 1–77.CrossRefGoogle Scholar
  6. Alexopoulos, C. J. (1964). The rapid sporulation of some myxomycetes in moist chamber culture. Southwestern Naturalist, 9, 155–159.CrossRefGoogle Scholar
  7. Baldauf, S. L. (2003). The deep roots of Eukaryotes based on combined protein data. Science, 300, 1703–1706.PubMedCrossRefGoogle Scholar
  8. Baldauf, S. L. (2008). An overview of the phylogeny and diversity of eukaryotes. Journal of Systematics and Evolution, 46, 263–273.Google Scholar
  9. Bapteste, E., Brinkmann, H., Lee, J. A., Moore, D. V., Sensen, C. W., Gordon, P., et al. (2002). The analysis of 100 genes support the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proceedings of the National Academy of Sciences of the United States of America, 99, 1414–1419.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bardele, C. F., Foissner, W., & Blanton, R. L. (1991). Morphology, morphogenesis and systematic position of the sorocarp forming ciliate Sorogena stoianovitchae Bradbury & Olive 1980. Journal of Protozoology, 38, 7–17.CrossRefGoogle Scholar
  11. Blackwell, M., & Busard, A. (1978). The use of pigments as a taxonomic character to distinguish species of the Trichiaceae (Myxomycetes). Mycotaxon, 7, 61–67.Google Scholar
  12. Blackwell, M., & Gilbertson, R. L. (1980). Sonoran desert myxomycetes. Mycotaxon, 11, 139–149.Google Scholar
  13. Brown, M. W., Spiegel, F. W., & Silberman, J. D. (2009). Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Molecular Biology and Evolution, 12, 2699–2709.CrossRefGoogle Scholar
  14. Brown, M. W., Spiegel, F. W., & Silberman, J. D. (2010). A morphologically simple species of Acrasis (Heterolobosea, Excavata), Acrasis helenhemmesae n. sp. Journal of Eukaryotic Microbiology, 57, 346–353.Google Scholar
  15. Brown, M. W., Silberman, J. D., & Spiegel, F. W. (2012). A contemporary evaluation of the acrasids (Acrasidae, Heterolobosea, Excavata). European Journal of Protistology, 48, 103–123.PubMedCrossRefGoogle Scholar
  16. Cavalier-Smith, T. (2013). Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. European Journal of Protistology, 49, 115–178.PubMedCrossRefGoogle Scholar
  17. Clark, J. (2000). The species problem in the myxomycetes. Stapfia, 73, 39–53.Google Scholar
  18. Clark, J., & Haskins, E. F. (2010). Reproductive systems in the myxomycetes: A review. Mycosphere, 1, 337–353.Google Scholar
  19. Clark, J., & Haskins, E. F. (2011). Principles and protocols for genetical study of myxomycete reproductive systems and plasmodial coalescence. Mycosphere, 2, 487–496.Google Scholar
  20. Clark, J., & Haskins, E. F. (2013). The nuclear reproductive cycle in the myxomycetes: A review. Mycosphere, 4, 233–248.CrossRefGoogle Scholar
  21. Clissmann, F., Fiore-Donno, A. M., Hoppe, B., Krüger, D., Kahl, T., Unterseher, M., & Schnittler, M. (2015). First insight into dead wood protistean diversity: A molecular sampling of bright-spored myxomycetes (Amoebozoa, slime moulds) in decaying beech logs. FEMS Microbiology Ecology. doi:10.1093/femsec/fiv050.v.PubMedGoogle Scholar
  22. Collins, O. R. (1979). Myxomycete biosystematics: Some recent developments and future research opportunities. Botanical Review, 45, 145–201.CrossRefGoogle Scholar
  23. Collins, O. R. (1980). Apomictic-heterothallic conversion in a myxomycete, Didymium iridis. Mycologia, 72, 1109–1116.CrossRefGoogle Scholar
  24. Collins, O. R. (1981). Myxomycete genetics, 1960–1981. Journal of the Elisha Mitchell Scientific Society, 97, 101–125.Google Scholar
  25. Cooke, M. C. (1877). The myxomycetes of Great Britain arranged according to the method of Rostafinski: The characters of all the orders, families and genera, with descriptions of the British species, and original analytical tables, translated from the Polish. London: Williams and Norgate.CrossRefGoogle Scholar
  26. de Bary, A. (1859). Die Mycetozoen. Ein Beitrag zur Kenntnis der niedersten Thiere. Zeitschrift für Wissenschaftliche Zoologie, 10, 88–175.Google Scholar
  27. de Bary, A. (1864). Die Mycetozoa (Schleimpilze). Ein Beitrag zur Kenntnis der niedersten Organismen. Leipzig: Engelmann.Google Scholar
  28. Dembitsky, V. M., Rezanka, T., Spizek, J., & Hanus, L. O. (2005). Secondary metabolites of slime molds (myxomycetes). Phytochemistry, 66, 747–769.PubMedCrossRefGoogle Scholar
  29. Domke, W. (1952). Der erste sichere Fund eines Myxomyceten im baltischen Bernstein (Stemonitis splendens Rost. fa. succini fa. nov. foss.). Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg, 21, 154–161.Google Scholar
  30. Dörfelt, H., Schmidt, A. R., Ullmann, P., & Wunderlich, J. (2003). The oldest fossil myxogastroid slime mould. Mycological Research, 107, 123–126.PubMedCrossRefGoogle Scholar
  31. Dykstra, M. J., & Keller, H. W. (2000). Class Mycetozoa de Bary, 1859. In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), An illustrated guide to the Protozoa II (pp. 952–980). Lawrence: Society of Protozoologists.Google Scholar
  32. Eliasson, U. (1977). Recent advances in the taxonomy of myxomycetes. Botaniska Notiser, 130, 483–492.Google Scholar
  33. Eliasson, U. (2015). Review and remarks on current generic delimitations in the myxomycetes, with special emphasis on Licea, Listerella and Perichaena. Nova Hedwigia. Scholar
  34. Eliasson, U., & Keller, H. W. (1999). Coprophilous myxomycetes: Updated summary, key to species, and taxonomic observations on Trichia brunnea, Arcyria elaterensis, and Arcyria stipata. Karstenia, 39, 1–10.Google Scholar
  35. Erastova, D. A., Okun, M., Novozhilov, Y. K., & Schnittler, M. (2013). Phylogenetic position of the enigmatic myxomycete Kelleromyxa fimicola based on SSU rDNA sequences. Mycological Progress, 12, 599–608.CrossRefGoogle Scholar
  36. Estrada-Torres, A., Gaither, T., & Miller, D. L. (2005). The myxomycete genus Schenella: Morphological and DNA sequence evidence for synonymy with the gasteromycete genus Pyrenogaster. Mycologia, 97, 139–149.PubMedCrossRefGoogle Scholar
  37. Feest, A., Taylor, K. M., & Stephenson, S. L. (2015). The occurrence of myxomycetes in wood? Fungal Ecology, 17, 179–182.CrossRefGoogle Scholar
  38. Feng, Y., & Schnittler, M. (2015). Sex or no sex? Independent marker genes and group I introns reveal the existence of three sexual but reproductively isolated biospecies in Trichia varia (Myxomycetes). Organisms, Diversity and Evolution, 15, 631–650.CrossRefGoogle Scholar
  39. Feng, Y., & Schnittler, M. (2016). Molecular or morphological species? Myxomycete diversity in a deciduous forest in northeastern Germany. Nova Hedwigia, online first, doi: 10.1016/j.myc.2015.10.002).Google Scholar
  40. Feng, Y., Klahr, A., Janik, P., Ronikier, A., Hoppe, T., Novozhilov, Y. K., & Schnittler, M. (2016). What an intron may tell: Several sexual biospecies coexist in Meriderma spp. (Myxomycetes). Protist, 167, 234–253.PubMedCrossRefGoogle Scholar
  41. Ferris, P. J., Vogt, V. M., & Truitt, C. L. (1983). Inheritance of extrachromosomal rDNA in Physarum polycephalum. Molecular and Cellular Biology, 3, 635–642.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fiore-Donno, A.-M., Meyer, M., Baldauf, S. L., & Pawlowski, J. (2008). Evolution of dark-spored Myxomycetes (slime-molds): Molecules versus morphology. Molecular Phylogenetics and Evolution, 46, 878–889.PubMedCrossRefGoogle Scholar
  43. Fiore-Donno, A.-M., Kamono, A., Chao, E. E., Fukui, M., & Cavalier-Smith, T. (2010a). Invalidation of Hyperamoeba by transferring its species to other genera of Myxogastria. Journal of Eukaryotic Microbiology, 57, 189–196.PubMedCrossRefGoogle Scholar
  44. Fiore-Donno, A.-M., Nikolaev, S. I., Nelson, M., Fiore-Donno, A. M., Nikolaev, S. I., Nelson, M., Pawlowski, J., Cavalier-Smith, T., & Baldauf, S. L. (2010b). Deep phylogeny and evolution of slime moulds (mycetozoa). Protist, 161, 55–70. doi:10.1016/j.protis.2009.05.002.PubMedCrossRefGoogle Scholar
  45. Fiore-Donno, A.-M., Novozhilov, Y. K., Meyer, M., & Schnittler, M. (2011). Genetic structure of two protist species (Myxogastria, Amoebozoa) reveals possible predominant asexual reproduction in sexual amoebae. PLoS ONE, 6, e22872. doi:10.1371/journal.pone.0022872.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fiore-Donno, A.-M., Kamono, A., Meyer, M., Schnittler, M., Fukui, M., & Cavalier-Smith, T. (2012). 18S rDNA Phylogeny of Lamproderma and allied genera (Stemonitales, Myxomycetes, Amoebozoa). PLoS ONE, 7. doi:10.1371/journal.pone.0035359.Google Scholar
  47. Fiore-Donno, A.-M., Clissmann, F., Meyer, M., Schnittler, M., & Cavalier-Smith, T. (2013). Two-gene phylogeny of bright-spored Myxomycetes (slime moulds, superorder Lucisporidia). PLoS ONE, 8, e62586.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Fiore-Donno, A. M., Weinert, J., Wubet, T., & Bonkowski, M. (2016). Metacommunity analysis of amoeboid protists in grassland soils. Scientific Reports, 6, 19068. doi:10.1028/srep19068.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fiz-Palacios, O., Romeralo, M., Ahmadzadeh, A., Weststrand, S., Ahlberg, P. E., et al. (2013). Did Terrestrial diversification of amoebas (Amoebozoa) occur in synchrony with land plants? PLoS ONE, 8(9), e74374. doi:10.1371/journal.pone.0074374.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gilbert, H. C., & Martin, G. W. (1933). Myxomycetes found on the bark of living trees. University of Iowa Studies in Natural History, 15, 3–8.Google Scholar
  51. Goddard, M. R., & Burt, A. (1999). Recurrent invasion and extinction of a selfish gene. Proceedings of the National Academy of Sciences of the United States of America, 96, 13880–13885.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Graham, A. (1971). The role of myxomycota spores in palynology (with a brief note on the morphology of certain algal zygospores). Review of Palaeobotany and Palynology, 11, 89–99.CrossRefGoogle Scholar
  53. Harkönen, M. (1977). Corticolous myxomycetes in three different habitats in southern Finland. Karstenia, 17, 19–32.Google Scholar
  54. Harkönen, M. (1981). Myxomycetes developed on litter of common Finnish trees in moist chamber cultures. Nordic Journal of Botany, 1, 791–794.CrossRefGoogle Scholar
  55. Haskins, E. F., & Wrigley de Basanta, D. (2008). Methods of agar culture of myxomycetes: An overview. Revista Mexicana de Micologia, 27, 1–7.Google Scholar
  56. Haugen, P., Coucheron, D. H., Rønning, S. B., Haugli, K., & Johansen, S. (2003). The molecular evolution and structural organization of self-splicing group I introns at position 516 in nuclear SSU rDNA of myxomycetes. Journal of Eukaryotic Microbiology, 50, 283–292.PubMedCrossRefGoogle Scholar
  57. Hoppe, T., & Kutschera, U. (2013). Chromosome numbers in representative myxomycetes: A cytogenetic study. Mycological Progress, 13(1), 189–192.CrossRefGoogle Scholar
  58. Hoppe, T., & Schwippert, W. W. (2014). Hydrophobicity of myxomycete spores: An undescribed aspect of spore ornamentation. Mycosphere, 5(4), 601–606. doi:10.5943/mycosphere/5/4/12.Google Scholar
  59. Hüttermann, A. (1973). Physarum polycephalum. Munich: Urban & Fischer.Google Scholar
  60. Ing, B. (1999). The myxomycetes of Britain and Ireland: An identification handbook. Slough: The Richmond Publishing Company, Ltd.Google Scholar
  61. Iwata, D., Ishibashi, M., & Yamamoto, Y. (2003). Cribrarione B, a new naphthoquinone pigment from the myxomycete Cribraria cancellata. Journal of Natural Products, 66, 1611–1612.PubMedCrossRefGoogle Scholar
  62. Johansen, S., Embley, T. M., & Willassen, N. P. (1993). A family of nuclear homing endonucleases. Nucleic Acids Research, 21, 4405.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Johansen, S., Elde, M., Vader, A., Haugen, P., Haugli, K., & Haugli, F. (1997). In vivo mobility of a group I twintron in nuclear ribosomal DNA of the myxomycete Didymium iridis. Molecular Microbiology, 24, 737–745.PubMedCrossRefGoogle Scholar
  64. Kamono, A., Kojima, H., Matsumoto, J., Kawamura, K., & Fukui, M. (2009). Airborne myxomycete spores: Detection using molecular techniques. Naturwissenschaften, 96, 147–151.PubMedCrossRefGoogle Scholar
  65. Kamono, A., Meyer, M., Cavalier-Smith, T., Fukui, M., & Fiore-Donno, A.-M. (2012). Exploring slime mould diversity in high-altitude forests and grasslands by environmental RNA analysis. FEMS Microbiology Ecology, 84, 98–109.PubMedCrossRefGoogle Scholar
  66. Karpov, S. A., & Mylnikov, A. P. (1997). Ultrastructure of the colorless flagellated Hyperamoeba flagellata with special reference to the flagellate apparatus. European Journal of Protistology, 33, 349–355.CrossRefGoogle Scholar
  67. Keller, H. W., & Braun, K. (1999). Myxomycetes of Ohio: Their systematics, biology and use in teaching. Ohio Biological Survey Bulletin, New Series, 13(2), 1–182.Google Scholar
  68. Keller, H. W., & Brooks, T. E. (1976). Corticolous myxomycetes V: Observations on the genus Echinostelium. Mycologia, 68, 1204–1220.CrossRefGoogle Scholar
  69. Kretzschmar, M., Kuhnt, A., Bonkowski, M., & Fiore-Donno, A. M. (2015). Phylogeny of the highly divergent Echinosteliales (Amoebozoa). Journal of Eukaryotic Microbiology. doi:10.1111/ firstGoogle Scholar
  70. Lado, C. (2005–2016). An on line nomenclatural information system of Eumycetozoa. Accessed Mar 2016.Google Scholar
  71. Lado, C., & Wrigley de Basanta, D. (2008). A review of Neotropical myxomycetes (1828–2008). Anales del Jardin Botánico de Madrid, 65(2), 211–254.Google Scholar
  72. Lado, C., Mosquera, J., & Beltrán-Tejera, E. (1999). Cribraria zonatispora, development of a new Myxomycete with unique spores. Mycologia, 91(1), 157–165.CrossRefGoogle Scholar
  73. Lado, C., Estrada-Torres, A., & Stephenson, S. L. (2007). Myxomycetes collected in the first phase of a north-south transect of Chile. Fungal Diversity, 25, 81–101.Google Scholar
  74. Lahr, D. J. G., Parfrey, L. W., Mitchell, E. A., Katz, L. A., & Lara, E. (2011). The chastity of amoebae: Re-evaluating evidence for sex in amoeboid organisms. Proceedings of the Royal Society B, 278, 2081–2090.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Leontyev, D. V., Schnittler, M., Moreno, G., Stephenson, S. L., Mitchell, D. W., & Rojas, C. (2014). The genus Alwisia (Myxomycetes) revalidated, with two species new to science. Mycologia, 106, 936–948.PubMedCrossRefGoogle Scholar
  76. Lindley, L. A., Stephenson, S. L., & Spiegel, F. W. (2007). Protostelids and myxomycetes isolated from aquatic habitats. Mycologia, 99, 504–509.PubMedCrossRefGoogle Scholar
  77. Link, J.H.F. (1833). Handbuch zur Erkennung der nutzbarsten und am häufigsten vorkommenden Gewächse 3. Ordo Fungi, Subordo 6. Myxomycetes 405–422, 432–433. Berlin.Google Scholar
  78. Lister, A. (1894). A monograph of the Mycetozoa. London.Google Scholar
  79. Lister, A. (1911). A monograph of the Mycetozoa, ed. 2, revised by G. Lister. London.Google Scholar
  80. Lister, A. (1925). A monograph of the Mycetozoa, ed. 3, revised by G. Lister. London.Google Scholar
  81. Loganathan, P., Paramasivan, P., & Kalyanasundaram, I. (1989). Melanin as the spore wall pigment of some myxomycetes. Mycological Research, 92, 286–292.CrossRefGoogle Scholar
  82. Macbride, T. H. (1899). North American slime-moulds. New York: The Macmillan Company.Google Scholar
  83. Macbride, T. H. (1922). North American slime-moulds (2nd ed.). New York: The Macmillan Company.Google Scholar
  84. Macbride, T. H., & Martin, G. W. (1934). The myxomycetes. New York: The Macmillan Company.Google Scholar
  85. Madelin, M. F. (1984). Presidential address—Myxomycete data of ecological significance. Transactions of the British Mycological Society, 83, 1–19.CrossRefGoogle Scholar
  86. Martin, G. W., & Alexopoulos, C. J. (1969). The myxomycetes. Iowa City: University of Iowa Press.Google Scholar
  87. Martin, G. W., Alexopoulos, C. J., & Farr, M. L. (1983). The genera of myxomycetes. Iowa City: University of Iowa Press.Google Scholar
  88. Massee, G. (1892). A monography of the myxogastres. London: Methuen and Company.CrossRefGoogle Scholar
  89. Mitchell, D. W. (1980). A key to corticolous myxomycetes. Cambridge, UK: The British Mycological Society.Google Scholar
  90. Mosquera, J., Lado, C., & Beltrán-Tejera, E. (2000). Morphology and ecology of Didymium subreticulosporum. Mycologia, 92, 378–983.CrossRefGoogle Scholar
  91. Nakagaki, T., Iima, M., Ueda, T., Nishiura, Y., Saigusa, T., Tero, A., Kobayashi, R., & Showalter, K. (2007). Minimum-risk path finding by an adaptive amoebal network. Physical Review Letters, 99, 068104(4).CrossRefGoogle Scholar
  92. Nannenga-Bremekamp, N.B. (1991). A guide to temperate Myxomycetes (De Nederlandse Myxomyceten, English translation by A. Feest & E. Burgraff). Bristol: Biopress Limited.Google Scholar
  93. Ndiritu, G. G., Winsett, K. E., Spiegel, F. W., & Stephenson, S. L. (2009). A checklist of African myxomycetes. Mycotaxon, 107, 353–356.CrossRefGoogle Scholar
  94. Neubert, H., Nowotny, W., & Baumann, K. (1993). Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs. 1 Ceratiomyxales, Echinosteliales, Liceales, Trichiales. Baumann Verl., Gomaringen.Google Scholar
  95. Neubert, H.; Nowotny, W., & Baumann, K. (1995) Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs. 2 Physariales. Baumann Verl., Gomaringen.Google Scholar
  96. Neubert, H.; Nowotny, W., & Baumann, K. (2000). Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs. 3 Stemonitales. Baumann Verl., Gomaringen.Google Scholar
  97. Novozhilov, Y. K., & Schnittler, M. (2008). Myxomycete diversity and ecology in arid regions of the Great Lake Basin of western Mongolia. Fungal Diversity, 30, 97–119.Google Scholar
  98. Novozhilov, Y.K., Schnittler, M., Erastova, D.A., Shchepin, O.N., 2017b. Myxomycetes of the Sikhote-Alin State Nature Biosphere Reserve (Far East, Russia). Nova Hedwigia 104 (in press).Google Scholar
  99. Olive, L. S. (1970). The Mycetozoa: A revised classification. Botanical Review, 36, 59–89.CrossRefGoogle Scholar
  100. Olive, L. S. (1975). The mycetozoans. New York: Academic.Google Scholar
  101. Olive, L. S., & Stoianovitch, C. (1979). Observations of the mycetozoan genus Ceratiomyxa: Description of a new species. Mycologia, 71, 546–555.CrossRefGoogle Scholar
  102. Pawlowski, J., & Burki, F. (2009). Untangling the phylogeny of amoeboid protists. Journal of Eukaryotic Microbiology, 56, 16–25.PubMedCrossRefGoogle Scholar
  103. Poulain, M., Meyer, M., & Bozonnet, J. 2011: Les myxomycetes. 1. Guide de deterimation. 2. Planches. Féd. Mycol. Bot. Dauphiné-Savoie, Delémont.Google Scholar
  104. Rebhahn, M.-A., Schnittler, M., & Liebermann, B. (1999). Taxonomic relevance of pigment patterns in Arcyria species (Trichiales, Myxomycetes) including Arcyodes incarnata. Nova Hedwigia, 69, 415–427.Google Scholar
  105. Reichenbach, H. (1993). Biology of the Myxobacteria: Ecology and taxonomy. Washington, DC: American Society for Microbiology.Google Scholar
  106. Rojas, C., & Stephenson, S. L. (2011). Notes on a rapid assessment of myxomycetes for Kabylie, Algeria. Sydowia, 63, 113–123.Google Scholar
  107. Rojas, C., Valverde, R., Stephenson, S. L., & Vargas, M. J. (2010). Biogeographical and ecological patterns of Costa Rican myxomycetes. Fungal Ecology, 3, 39–147.CrossRefGoogle Scholar
  108. Romeralo, M., Cavender, J. C., Landolt, J. C., Stephenson, S. L., & Baldauf, S. L. (2011). An expanded phylogeny of social amoebas (Dictyostelia) shows increasing diversity and new morphological patterns. BMC Evolutionary Biology, 11, 84. doi:10.1186/1471-2148-11-84.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Rostafinski, J. T. (1873). Versuch eines systems der mycetozoen. Inaugural dissertation. Germany: University of Strassberg.Google Scholar
  110. Rostafinski, J. T. (1874–1876). Sluzowce (Mycetozoa) monografia. Towarz Nauk Scis Paryzu 5:1–215 (1974); 217–432 (1895); Dodatek [appendix] 8:1–43 (1876).Google Scholar
  111. Schaap, P., Winckler, T., Nelson, M., Alvarez-Curto, E., Elgie, B., Hagiwara, H., et al. (2006). Molecular phylogeny and evolution of morphology in the social amoebas. Science, 314, 661–663. doi:10.1126/science.1130670.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Schaap, P., Barrantes, I., Minx, P., Sasaki, N., Anderson, E. W., Bénard, M., et al. (2016). The Physarum polycephalum genome reveals extensive use of prokaryotic two-component and Metazoan-type tyrosin kinase signaling. Genome Biology and Evolution, 8, 109–125.CrossRefGoogle Scholar
  113. Schnittler, M. (2001a). Foliicolous liverworts as a microhabitat for Neotropical Myxomycetes. Nova Hedwigia, 72, 259–270.Google Scholar
  114. Schnittler, M. (2001b). Ecology of myxomycetes from a winter-cold desert in western Kazakhstan. Mycologia, 93, 135–167.CrossRefGoogle Scholar
  115. Schnittler, M., & Mitchell, D. W. (2000). Species diversity in myxomycetes based on the morphological species concept—a critical examination. Stapfia, 73, 55–61.Google Scholar
  116. Schnittler, M., & Stephenson, S. L. (2002). Inflorescences of Neotropical herbs as a newly discovered microhabitat for myxomycetes. Mycologia, 94, 6–20.PubMedCrossRefGoogle Scholar
  117. Schnittler, M., & Tesmer, J. (2008). A habitat colonisation model for spore-dispersed organisms—does it work with eumycetozoans? Mycological Research, 112, 697–707.PubMedCrossRefGoogle Scholar
  118. Schnittler, M., Stephenson, S. L., & Novozhilov, Y. K. (2000). Ecology and world distribution of Barbeyella minutissima (Myxomycetes). Mycological Research, 104, 1518–1523.CrossRefGoogle Scholar
  119. Schnittler, M., Unterseher, M., & Tesmer, J. (2006). Species richness and ecological characterization of myxomycetes and myxomycete-like organisms in the canopy of a temperate deciduous forest. Mycologia, 98, 223–232.PubMedCrossRefGoogle Scholar
  120. Schnittler, M., Unterseher, M., Pfeiffer, T., Novozhilov, Y. K., & Fiore-Donno, A. M. (2010). Ecology of sandstone ravine myxomycetes from Saxonian Switzerland (Germany). Nova Hedwigia, 90, 227–302.CrossRefGoogle Scholar
  121. Schnittler, M., Novozhilov, Y. K., Romeralo, M., Brown, M., & Spiegel, F. W. (2012). Myxomycetes and myxomycete-like organisms. In W. Frey (Ed.), Englers syllabus of plant families (Vol. 4, 13th ed., pp. 40–88). Stuttgart: Bornträger.Google Scholar
  122. Schnittler, M., Novozhilov, Y. K., Shadwick, J. D. L., Spiegel, F. W., García-Carvajal, E., & König, P. (2015). What substrate cultures can reveal: Myxomycetes and myxomycete-like organisms from the Sultanate of Oman. Mycosphere, 6(3), 356–384.Google Scholar
  123. Schnittler, M., Dagamac, N. H. A., Sauke, M., Wilmking, M., Buras, A., Ahlgrimm, S., & Eusemann, P. (2016). Ecological factors limiting the occurrence of corticolous myxomycetes – a case study from Alaska. Fungal Ecology, 21, 16–23.CrossRefGoogle Scholar
  124. Schnittler, M., Shchepin, O.N., Dagamac, N.H.A., Borg Dahl, M., Novozhilov, Yu.K., 2017. Barcoding myxomycetes with molecular markers: challenges and opportunities. Nova Hedwigia 104 (in press).Google Scholar
  125. Shadwick, L. L., Spiegel, F. W., Shadwick, J. D. L., Brown, M. W., & Silberman, J. D. (2009). Eumycetozoa = Amoebozoa?: SSUrDNA Phylogeny of protosteloid slime molds and its significance for the Amoebozoan supergroup. PLoS ONE, 4(8), e6754. doi:10.1371/journal.pone.0006754.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Shchepin, O., Novozhilov, Y. K., & Schnittler, M. (2014). Nivicolous myxomycetes in agar culture: Some results and open problems. Protistology, 8(2), 53–61.Google Scholar
  127. Smith, T., & Stephenson, S. L. (2007). Algae associated with myxomycetes and leafy liverworts on decaying spruce logs. Castanea, 72, 50–57.CrossRefGoogle Scholar
  128. Snell, K. L., & Keller, H. W. (2003). Vertical distribution and assemblages of corticolous myxomycetes on five tree species in the Great Smoky Mountains National Park. Mycologia, 95, 565–576.PubMedCrossRefGoogle Scholar
  129. Speijer, D., Lukeš, J., & Eliáš, M. (2015). Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. PNAS, 112, 8827–8834.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Spiegel, F. W. (2011). Commentary on the chastity of amoebae: Re-evaluating evidence for sex in amoeboid organisms. Proceedings of the Royal Society B, 278, 2096–2097.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Spiegel, F. W., & Feldman, J. (1989). Fruiting body development in the mycetozoan Echinostelium bisporum. Canadian Journal of Botany, 67, 1285–1283.CrossRefGoogle Scholar
  132. Spiegel, F. W., Stephenson, S. L., Keller, H. W., Moore, D. L., & Cavender, J. C. (2004). Mycetozoans. In G. M. Mueller, G. F. Bills, & M. S. Foster (Eds.), Biodiversity of fungi, inventory and monitoring methods (pp. 547–576). Burlington: Elsevier Academic Press.CrossRefGoogle Scholar
  133. Stephenson, S. L. (1988). Distribution and ecology of myxomycetes in temperate forests. I. Patterns of occurrence in the upland forests of southwestern Virginia. Canadian Journal of Botany, 66, 2187–2207.Google Scholar
  134. Stephenson, S. L. (1989). Distribution and ecology of myxomycetes in temperate forests. II. Patterns of occurrence on bark surface of living trees, leaf litter, and dung. Mycologia, 81, 608–621.CrossRefGoogle Scholar
  135. Stephenson, S. L. (2003). Myxomycetes of New Zealand. Hong Kong: Fungal Diversity Press.Google Scholar
  136. Stephenson, S. L. (2010). The kingdom fungi: The biology of mushrooms, molds, and lichens. Portland: Timber Press.Google Scholar
  137. Stephenson, S. L. (2014). Excavata: Acrasiomycota; Amoebozoa: Dictyosteliomycota, Myxomycota. In D. J. McLaughlin & J. W. Spatafora (Eds.), The Mycota: systematics and evolution part A, VII (pp. 21–38). New York: Springer Publishing.Google Scholar
  138. Stephenson, S. L., & Feest, A. (2012). Ecology of soil eumycetozoans. Acta Protozoologica, 51, 201–208.Google Scholar
  139. Stephenson, S. L., & Stempen, H. (1994). Myxomycetes: A handbook of slime molds. Portland: Timber Press.Google Scholar
  140. Stephenson, S. L., Kalyanasundaram, I., & Lakhanpal, T. N. (1993). A comparative biogeographical study of myxomycetes in the mid-Appalachians of eastern North America and two regions of India. Journal of Biogeography, 20, 645–657.CrossRefGoogle Scholar
  141. Stephenson, S. L., Novozhilov, Y., & Schnittler, M. (2000). Distribution and ecology of myxomycetes in high–latitude regions of the northern hemisphere. Journal of Biogeography, 27, 741–754.CrossRefGoogle Scholar
  142. Stephenson, S. L., Schnittler, M., & Novozhilov, Y. K. (2008). Myxomycete diversity and distribution from the fossil record to the present. Biodiversity and Conservation, 17, 285–301.CrossRefGoogle Scholar
  143. Stephenson, S. L., Fiore-Donno, A. M., & Schnittler, M. (2011). Myxomycetes in soil. Soil Biology and Biochemistry, 43, 2237–2242.CrossRefGoogle Scholar
  144. Sugimoto, H., & Endoh, H. (2008). Differentially expressed genes during fruit body development in the aggregative ciliate Sorogena stoianovitchae (Ciliophora: Colpodea). Journal of Eukaryotic Microbiology, 55, 110–116.PubMedCrossRefGoogle Scholar
  145. Takahashi, K., & Hada, Y. (2009). Distribution of myxomycetes on coarse woody debris of Pinus densiflora at different decay stages in secondary forests of western Japan. Mycoscience, 50(4), 253–260.CrossRefGoogle Scholar
  146. Torres-Machorro, A. L., Hernández, R., Cevallos, A. M., & López-Villaseñor, I. (2010). Ribosomal RNA genes in eukaryotic microorganisms: Witnesses of phylogeny? FEMS Microbiology Reviews, 34, 59–86.PubMedCrossRefGoogle Scholar
  147. Urich, T., Lanzén, A., Qi, J., Huson, D. H., Schleper, C., & Schuster, S. C. (2008). Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE, 3, e2527. doi:10.1371/journal.pone.0002527.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Walker, L. W., & Stephenson, S. L. (2016). The species problem in the myxomycetes revisited. Protist, 167, 319–338.PubMedCrossRefGoogle Scholar
  149. Wikmark, O. G., Haugen, P., Lundblad, E. W., Haugli, K., & Johansen, S. D. (2007). The molecular evolution and structural organization of group I introns at position 1389 in nuclear small subunit rDNA of myxomycetes. Journal of Eukaryotic Microbiology, 54, 49–56.PubMedCrossRefGoogle Scholar
  150. Wrigley de Basanta, D. (2000). Acid deposition in Madrid and corticolous myxomycetes. Stapfia, 73, 113–120.Google Scholar
  151. Wrigley de Basanta, D., Lado, C., & Estada-Torres, A. (2012). Description and life cycle of a new Physarum (Myxomycetes) from the Atacama Desert in Chile. Mycologia, 104(5), 1206–1212.PubMedCrossRefGoogle Scholar
  152. Yoon, H. S., Grant, J., Tekle, Y. I., Wu, M., Chaon, B. C., Cole, J. C., et al. (2008). Broadly sampled multigene trees of eukaryotes. BMC Evolutionary Biology. doi:10.1186/1471-2148-8-14.PubMedPubMedCentralGoogle Scholar
  153. Zaman, V., Zaki, M., Howe, J., Ng, M., Leipe, D. D., Sogin, M. L., & Silberman, J. D. (1999). Hyperameoba isolated from human feces: Description and phylogenetic affinity. European Journal of Protistology, 35, 197–207.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of ArkansasFayettevilleUSA
  2. 2.Ernst Moritz Arndt University Greifswald, Institute of Botany and Landscape EcologyGreifswaldGermany

Personalised recommendations