• Wenche EikremEmail author
  • Linda K. Medlin
  • Jorijntje Henderiks
  • Sebastian Rokitta
  • Björn Rost
  • Ian Probert
  • Jahn Throndsen
  • Bente Edvardsen
Living reference work entry

Later version available View entry history


Haptophyta are predominantly planktonic and phototrophic organisms that have their main distribution in marine environments worldwide. They are a major component of the microbial ecosystem, some form massive blooms and some are toxic. Haptophytes are significant players in the global carbonate cycle through photosynthesis and calcification. They are characterized by the haptonema, a third appendage used for attachment and food handling, two similar flagella, two golden-brown chloroplasts, and organic body scales that serve in species identification. Coccolithophores have calcified scales termed coccoliths. Phylogenetically Haptophyta form a well-defined group and are divided into two classes Pavlovophyceae and Coccolithophyceae (Prymnesiophyceae). Currently, about 330 species are described. Environmental DNA sequencing shows high haptophyte diversity in the marine pico- and nanoplankton, of which many likely represent novel species and lineages. Haptophyte diversity is believed to have peaked in the past and their presence is documented in the fossil record back to the Triassic, approximately 225 million years ago. Some biomolecules of haptophyte origin are extraordinarily resistant to decay and are thus used by geologists as sedimentary proxies of past climatic conditions.


Biogeochemical cycles Coccoliths Ecology Evolution Fossil record Haptophyta Morphology Ocean acidification Phylogeny 



Grateful thanks are due to those authors and publishers (acknowledged in the legends) who have given permission for the reproduction of published and unpublished material. The present article is based on Green et al. (1990).


  1. Aanesen, R. T., Eilertsen, H. C., & Stabell, O. B. (1998). Light-induced toxic properties of the marine alga Phaeocystis pouchetii towards cod larvae. Aquatic Toxicology, 40, 109–121.CrossRefGoogle Scholar
  2. Allen, D. M., & Northcote, D. H. (1975). The scales of Chrysochromulina chiton. Protoplasma, 83, 389–412.CrossRefGoogle Scholar
  3. Andersen, R. A. (2005). Algal culturing techniques. Burlington: Academic Press. 578 pp.Google Scholar
  4. Andersen, R. A., & Kawachi, M. (2005). Traditional microalgae isolation techniques. In R. A. Andersen (Ed.), Algal culturing techniques (pp. 83–100). Burlington: Academic Press.Google Scholar
  5. Andersen, R. A., Kim, J. I., Tittley, I., & Yoon, H. S. (2014). A reinvestigation of Chrysotila (Prymnesiophyceae) using material collected from the type locality. Phycologia, 53, 463–473.CrossRefGoogle Scholar
  6. Andersen, R. A., Kim, J. I., Tittley, I., & Yoon, H. S. (2015). Chrysotila dentata comb. nov., Chrysotila roscoffiensis comb. nov. and Chrysocapsa wetherbeei sp. nov. Phycologia, 54, 321–322.CrossRefGoogle Scholar
  7. Anderson, O. R., Swanberg, N. R., & Bennett, P. (1983). Fine structure of yellow-brown symbionts (Prymnesiida) in solitary Radiolaria and their comparison with acantharian symbionts. Journal of Protozoology, 30, 718–722.CrossRefGoogle Scholar
  8. Anning, T., Nimer, N., Merrett, M. J., & Brownlee, C. (1996). Costs and benefits of calcification in coccolithophorids. Journal of Marine Systems, 9, 45–56.CrossRefGoogle Scholar
  9. Antia, N. J. (1980). Nutritional physiology and biochemistry of marine cryptomonads and chrysomonads. In M. Levandowsky & S. H. Hutner (Eds.), Biochemistry and physiology of protozoa (Vol. 3, pp. 67–115). New York: Academic.Google Scholar
  10. Antoine, D., & Morel, A. (1996). Oceanic primary production: 1. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Global Biogeochemical Cycles, 10, 43–55.CrossRefGoogle Scholar
  11. Aubry, M.-P. (1992). Late Paleogene calcareous nannoplankton evolution: A tale of climatic deterioration. In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 272–309). Princeton: Princeton University Press.Google Scholar
  12. Aubry, M.-P. (2007). A major Pliocene coccolithophore turnover: Change in morphological strategy in the photic zone. In S. Monechi, R. Coccioni, & M. R. Rampino (Eds.), Large ecosystem perturbations: Causes and consequences (The Geological Society of America special paper, Vol. 424, pp. 25–51). Boulder: Geological Society of America.CrossRefGoogle Scholar
  13. Bach, L. T., Mackinder, L. C. M., Schulz, K. G., Wheeler, G., Schroeder, D. C., Brownlee, C., & Riebesell, U. (2013). Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytologist, 199, 121–134.Google Scholar
  14. Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L., & Schulz, K. G. (2015). A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography, 135, 125–138.CrossRefGoogle Scholar
  15. Bach, L. T., Riebesell, U., & Schulz, K. G. (2011). Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 56, 2040–2050.CrossRefGoogle Scholar
  16. Baker, J. W., Grover, J. P., Brooks, B. W., Urena-Boeck, F., Roelke, D. L., Errera, R., & Kiesling, R. L. (2007). Growth and toxicity of Prymnesium parvum (Haptophyta) as a function of salinity, light, and temperature. Journal of Phycology, 43, 219–227.CrossRefGoogle Scholar
  17. Balch, W. M., Holligan, P. M., Ackleson, S. G., & Voss, K. J. (1991). Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnology and Oceanography, 36, 629–643.CrossRefGoogle Scholar
  18. Balch, W. M., Kilpatrick, K. A., Holligan, P., Harbour, D., & Fernandez, E. (1996). The 1991 coccolithophore bloom in the central North Atlantic. 2. Relating optics to coccolith concentration. Limnology and Oceanography, 41, 1684–1696.CrossRefGoogle Scholar
  19. Baumann, K.-H., Böckel, B., & Frenz, M. (2004). Coccolith contribution to South Atlantic carbonate sedimentation. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores (pp. 367–402). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  20. Beaufort, L. (2005). Weight estimates of coccoliths using the optical properties (birefringence) of calcite. Micropaleontology, 51, 289–298.CrossRefGoogle Scholar
  21. Beaufort, L., Barbarin, N., & Gally, Y. (2014). Optical measurements to determine the thickness of calcite crystals and the mass of thin carbonate particles such as coccoliths. Nature Protocols, 9, 633–642.PubMedCrossRefGoogle Scholar
  22. Beaufort, L., Probert, I., de Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R. E. M., & de Vargas, C. (2011). Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature, 476, 80–83.PubMedCrossRefGoogle Scholar
  23. Beech, P., & Wetherbee, R. (1984). Serial reconstruction of the mitochondrial reticulum in the coccolithophorid, Pleurochrysis carterae (Prymnesiophyceae). Protoplasma, 123, 226–229.CrossRefGoogle Scholar
  24. Beech, P., Wetherbee, R., & Pickett-Heaps, J. (1988). Transformation of the flagella and associated flagellar components during cell division in the coccolithophorid Pleurochrysis carterae. Protoplasma, 145, 37–46.CrossRefGoogle Scholar
  25. Beech, P. L., & Wetherbee, R. (1988). Observations on the flagellar apparatus and peripheral endoplasmic reticulum of the coccolithophorid, Pleurochrysis carterae (Prymnesiophyceae). Phycologia, 27, 142–158.CrossRefGoogle Scholar
  26. Beltran, C., de Rafélis, M., Minoletti, F., Renard, M., Sicre, M. A., & Ezat, U. (2007). Coccolith δ18O and alkenone records in middle Pliocene orbitally controlled deposits: High-frequency temperature and salinity variations of sea surface water. Geochemistry, Geophysics, Geosystems, 8, Q05003.CrossRefGoogle Scholar
  27. Bendif, E., Probert, I., Herve, A., Billard, C., Goux, D., Lelong, C., Cadoret, J. P., & Veron, B.(2011). Integrative taxonomy of the Pavlovophyceae (Haptophyta): A reassessment. Protist, 162, 738–761.CrossRefGoogle Scholar
  28. Bendif, M., Probert, I., Schroeder, D. C., & de Vargas, C. (2013). On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). Journal of Applied Phycology, 25, 1763–1776.CrossRefGoogle Scholar
  29. Benthien, A., Zondervan, I., Engel, A., Hefter, J., Terbrüggen, A., & Riebesell, U. (2007). Carbon isotopic fractionation during a mesocosm bloom experiment dominated by Emiliania huxleyi: Effects of CO2 concentration and primary production. Geochimica et Cosmochimica Acta, 71, 1528–1541.CrossRefGoogle Scholar
  30. Berge, G. (1962). Discoloration of the sea due to Coccolithus huxleyi “bloom”. Sarsia, 6, 27–40.CrossRefGoogle Scholar
  31. Berger, R., Liaaen-Jensen, S., McAlister, V., & Guillard, R. R. (1977). Carotenoids of Prymnesiophyceae (Haptophyceae). Biochemical Systematics and Ecology, 5, 71–75.CrossRefGoogle Scholar
  32. Berry, L., Taylor, A. R., Lucken, U., Ryan, K. P., & Brownlee, C. (2002). Calcification and inorganic carbon acquisition in coccolithophores. Functional Plant Biology, 29, 289–299.CrossRefGoogle Scholar
  33. Bertin, M. J., Zimba, P. V., Beauchesne, K. R., Huncik, K. M., & Moeller, P. D. R. (2012a). The contribution of fatty acid amides to Prymnesium parvum Carter toxicity. Harmful Algae, 20, 117–125.CrossRefGoogle Scholar
  34. Bertin, M. J., Zimba, P. V., Beauchesne, K. R., Huncik, K. M., & Moeller, P. D. R. (2012b). Identification of toxic fatty acid amides isolated from the harmful alga Prymnesium parvum Carter. Harmful Algae, 20, 111–116.CrossRefGoogle Scholar
  35. Billard, C. (1994). Life cycles. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 167–186). Oxford/New York: Oxford University Press/Clarendon.Google Scholar
  36. Billard, C., & Inouye, I. (2004). What is new in coccolithophore biology? In H. R. Thierstein & E. B. Young (Eds.), Coccolithophores: From molecular process to global impact (pp. 1–29). Berlin/Heidelberg/New York: Springer.CrossRefGoogle Scholar
  37. Birkhead, M., & Pienaar, R. N. (1994). The flagellar apparatus of Prymnesium nemamethecum (Prymnesiophyceae). Phycologia, 33, 311–323.CrossRefGoogle Scholar
  38. Birkhead, M., & Pienaar, R. N. (1995). The flagellar apparatus of Chrysochromulina sp. (Prymnesiophyceae). Journal of Phycology, 31, 96–108.CrossRefGoogle Scholar
  39. Bittner, L., Gobet, A., Audic, S., Romac, S., Egge, E. S., Santini, S., Ogata, H., Probert, I., Edvardsen, B., & De Vargas, C. (2013). Diversity patterns of uncultured haptophytes unravelled by pyrosequencing in Naples Bay. Molecular Ecology, 22, 87–101.PubMedCrossRefGoogle Scholar
  40. Bollmann, J., Baumann, K.-H., & Thierstein, H. R. (1998). Global dominance of Gephyrocapsa coccoliths in the Late Pleistocene: Selective dissolution, evolution or global environment change? Paleoceanography, 13, 517–529.CrossRefGoogle Scholar
  41. Borman, A. H., JONG, E. W., Huizinga, M., Kok, D. J., Westbroek, P., & Bosch, L. (1982). The role in CaCO3 crystallization of an acid Ca2+−binding polysaccharide associated with coccoliths of Emiliania huxleyi. European Journal of Biochemistry, 129, 179–183.PubMedCrossRefGoogle Scholar
  42. Bornemann, A., Aschwer, U., & Mutterlose, J. (2003). The impact of calcareous nannofossils on the pelagic carbonate accumulation across the Jurassic-Cretaceous boundary. Palaeogeography Palaeoclimatology Palaeoecology, 199, 187–228.CrossRefGoogle Scholar
  43. Bougaran, G., Le Déan, L., Lukomska, E., Kaas, R., & Baron, R. (2003). Transient initial phase in continuous culture of Isochrysis galbana affinis Tahiti. Aquatic Living Resources, 16, 389–394.CrossRefGoogle Scholar
  44. Bown, P. (Ed.). (1998). Calcareous nannofossil biostratigraphy. Cambridge: Chapman & Hall. 314.Google Scholar
  45. Bown, P. (2005). Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary. Geology, 33, 653–656.CrossRefGoogle Scholar
  46. Bown, P. R., Lees, J. A., & Young, J. R. (2004). Calcareous nannoplankton evolution and diversity through time. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores: From molecular processes to global impact (pp. 481–508). Berlin: Springer.CrossRefGoogle Scholar
  47. Bramlette, M. N. (1958). Significance of coccolithophorids in calcium-carbonate deposition. Bulletin of the Geologicial Society of America, 69, 121–126.CrossRefGoogle Scholar
  48. Brassell, S. C., & Dumitrescu, M. (2004). Recognition of alkenones in a lower Aptian porcellanite from the west-central Pacific. Organic Geochemistry, 35, 181–188.CrossRefGoogle Scholar
  49. Brown, M., Jeffrey, S., Volkman, J., & Dunstan, G. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315–331.CrossRefGoogle Scholar
  50. Brownlee, C., & Taylor, A. (2004). Calcification in coccolithophores: A cellular perspective. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores (pp. 31–49). Heidelberg: Springer.CrossRefGoogle Scholar
  51. Bruce, J. R., Knight, M., & Parke, M. W. (1940). The rearing of oysters on an algal diet. Journal of the Marine Biological Association of the United Kingdom, 24, 337–374.CrossRefGoogle Scholar
  52. Buitenhuis, E., van Bleijswijk, J., Bakker, D., & Veldhuis, M. (1996). Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea. Marine Ecology Progress Series, 143, 271–282.CrossRefGoogle Scholar
  53. Buitenhuis, E. T., De Baar, H. J. W., & Veldhuis, M. J. W. (1999). Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species. Journal of Phycology, 35, 949–959.CrossRefGoogle Scholar
  54. Butcher, R. (1952). Contributions to our knowledge of the smaller marine algae. Journal of the Marine Biological Association of the United Kingdom, 31, 175–191.CrossRefGoogle Scholar
  55. Carr, M.-E., Friedrichs, M. A., Schmeltz, M., Aita, M. N., Antoine, D., Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., & Behrenfeld, M. (2006). A comparison of global estimates of marine primary production from ocean color. Deep Sea Research Part II: Topical Studies in Oceanography, 53, 741–770.CrossRefGoogle Scholar
  56. Carter, N. (1937). New or interesting algae from brackish water. Archiv für Protistenkunde, 90, 1–68.Google Scholar
  57. Castberg, T., Thyrhaug, R., Larsen, A., Sandaa, R.-A., Heldal, M., Van Etten, J. L., & Bratbak, G. (2002). Isolation and characterization of a virus that infects Emiliania huxleyi (Haptophyta). Journal of Phycology, 38, 767–774.CrossRefGoogle Scholar
  58. Charlson, R. J., Lovelock, J. E., Andreae, M. O., & Warren, S. G. (1987). Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655–661.CrossRefGoogle Scholar
  59. Chrétiennot-Dinet, M-J., Vaulot, D., Putaux, J-L., Saito, Y & Chanzy H. (1997). The chitinous nature of filaments ejected by Phaeocystis (Prymnesiophyceae). Journal of Phycology, 33: 666–672.CrossRefGoogle Scholar
  60. Chrétiennot-Dinet, M.-J., Desreumaux, N., & Vignes-Lebbe, R. (2014). An interactive key to the Chrysochromulina species (Haptophyta) described in the literature. PhytoKeys: 34, 47–60.Google Scholar
  61. Conte, M. H., Thompson, A., Lesley, D., & Harris, R. P. (1998). Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica. Geochimica et Cosmochimica Acta, 62, 51–68.CrossRefGoogle Scholar
  62. Conte, M. H., Volkman, J. K., & Eglinton, G. (1994). Lipid biomarkers for the Haptophyta. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 265–285). Oxford: Clarendon.Google Scholar
  63. Cros, L., & Estrada, M. (2013). Holo-heterococcolithophore life cycles: Ecological implications. The Marine Ecology Progress Series, 492, 57–68.CrossRefGoogle Scholar
  64. Cros, L., Kleijne, A., Zeltner, A., Billard, C., & Young, J. (2000). New examples of holococcolith–heterococcolith combination coccospheres and their implications for coccolithophorid biology. Marine Micropaleontology, 39, 1–34.CrossRefGoogle Scholar
  65. Cuvelier, M. L., Allen, A. E., Monier, A., McCrow, J. P., Messie, M., Tringe, S. G., Woyke, T., Welsh, R. M., Ishoey, T., Lee, J. H., Binder, B. J., DuPont, C. L., Latasa, M., Guigand, C., Buck, K. R., Hilton, J., Thiagarajan, M., Caler, E., Read, B., Lasken, R. S., Chavez, F. P., & Worden, A. Z. (2010). Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 107, 14679–14684.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Cyronak, T., Schulz, K. G., & Jokiel, P. L. (2015). The Omega myth: What really drives lower calcification rates in an acidifying ocean. ICES Journal of Marine Science: Journal du Conseil: doi: 10.1093/icesms/fsv075Google Scholar
  67. Dahl, E., Lindahl, O., Paasche, E., & Throndsen, J. (1988). The Chrysochromulina polylepis bloom in Scandinavian waters during spring 1988. In E. M. Cosper, V. M. Bricelj & E. J. Carpenter (Eds.), Novel Phytoplankton Blooms. (pp. 383-405). New York: Springer.Google Scholar
  68. Daugbjerg, N., & Henriksen, P. (2001). Pigment composition and rbcL sequence data from the silicoflagellate Dictyocha speculum: A heterokont alga with pigments similar to some haptophytes. Journal of Phycology, 37, 1110–1120.CrossRefGoogle Scholar
  69. De Vargas, C., Aubry, M. P., Probert, I., & Young, J. R. (2007). Origin and evolution of coccolithophores: From coastal hunters to oceanic farmers. In P. Falkowski & A. H. Knoll (Eds.), Evolution of aquatic photoautotrophs (pp. 251–281). New York: Elsevier Academic.Google Scholar
  70. Decelle, J., Suzuki, N., Mahé, F., de Vargas, C., & Not, F. (2012). Molecular phylogeny and morphological evolution of the Acantharia (Radiolaria). Protist, 163, 435–450.PubMedCrossRefGoogle Scholar
  71. Delille, B., Harlay, J., Zondervan, I., Jacquet, S., Chou, L., Wollast, R., Bellerby, R. G. J., Frankignoulle, M., Vieira Borges, A., Riebesell, U., & Gattuso, J.-P. (2005). Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochemical Cycles, 19, 1–14.CrossRefGoogle Scholar
  72. Droop, M. R. (1953). On the ecology of flagellates from some brackish and fresh water rockpools of Finland. Acta Botanica Fennica, 51, 3–52.Google Scholar
  73. Dunkley Jones, T., Bown, P. R., Pearson, P. N., Wade, B. S., Coxall, H. K., & Lear, C. H. (2008). Major shifts in calcareous phytoplankton assemblages through the Eocene-Oligocene transition of Tanzania and their implications for low-latitude primary production. Paleoceanography, 23, PA4204.CrossRefGoogle Scholar
  74. Edvardsen, B., Eikrem, W., Green, J. C., Andersen, R. A., Moon-van der Staay, S. Y., & Medlin, L. K. (2000). Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia, 39, 19–35.CrossRefGoogle Scholar
  75. Edvardsen, B., Eikrem, W., Shalchian-Tabrizi, K., Riisberg, I., Johnsen, G., Naustvoll, L., & Throndsen, J. (2007). Verrucophora farcimen gen. et sp nov (Dictyochophyceae, Heterokonta) – A bloom-forming ichthyotoxic flagellate from the Skagerrak, Norway. Journal of Phycology, 43, 1054–1070.CrossRefGoogle Scholar
  76. Edvardsen, B., Eikrem, W., Throndsen, J., Saez, A. G., Probert, I., & Medlin, L. K. (2011). Ribosomal DNA phylogenies and a morphological revision provide the basis for a revised taxonomy of the Prymnesiales (Haptophyta). European Journal of Phycology, 46, 202–228.CrossRefGoogle Scholar
  77. Edvardsen, B., & Imai, I. (2006). The ecology of harmful flagellates within Prymnesiophyceae and Raphidophyceae. Ecology of Harmful Algae, 189, 67–79.CrossRefGoogle Scholar
  78. Edvardsen, B., & Medlin, L. (1998). Genetic analyses of authentic and alternate forms of Chrysochromulina polylepis (Haptophyta). Phycologia, 37, 275–283.CrossRefGoogle Scholar
  79. Edvardsen, B., & Paasche, E. (1998). Bloom dynamics and physiology of Prymnesium and Chrysochromulina. NATO ASI Series, Series G: Ecological Sciences, 41, 193–208.Google Scholar
  80. Edvardsen, B., & Vaulot, D. (1996). Ploidy analysis of the two motile forms of Chrysochromulina polylepis (Prymnesiophyceae). Journal of Phycology, 32, 94–102.CrossRefGoogle Scholar
  81. Egge, E. S., Eikrem, W., & Edvardsen, B. (2015a). Deep-branching Novel Lineages and High Diversity of Haptophytes in the Skagerrak (Norway) uncovered by 454 Pyrosequencing. Journal of Eukaryotic Microbiology, 62: 121–140.Google Scholar
  82. Egge, E. S., Johannessen, T. V., Andersen, T., Eikrem, W., Bittner, L., Larsen, A., Sandaa, R. A. and Edvardsen, B. (2015b). Seasonal diversity and dynamics of haptophytes in the Skagerrak, Norway, explored by high-throughput sequencing. Molecular ecology, 24, 3026–3042.Google Scholar
  83. Ehrenberg, D. C. G. (1836). Bemerkungen über feste mikroskopische, anorganische Formen in den erdigen und derben Mineralien. Bericht ber die Verhandlungen der Königlich Preussichen Akademie der Wissenschaften Berlin, 1836, 84–85.Google Scholar
  84. Eikrem, W. (1996). Chrysochromulina throndsenii sp. nov. (Prymnesiophyceae). Description of a new haptophyte flagellate from Norwegian waters. Phycologia, 35, 377–380.CrossRefGoogle Scholar
  85. Eikrem, W., & Edvardsen, B. (1999). Chrysochromulina fragaria sp. nov. (Prymnesiophyceae), a new haptophyte flagellate from Norwegian waters. Phycologia, 38, 149–155.CrossRefGoogle Scholar
  86. Eikrem, W., & Moestrup, Ø. (1998). Structural analysis of the flagellar apparatus and the scaly periplast in Chrysochromulina scutellum sp. nov. (Prymnesiophyceae, Haptophyta) from the Skagerrak and the Baltic. Phycologia, 37, 132–153.CrossRefGoogle Scholar
  87. Eltgroth, M. L., Watwood, R. L., & Wolfe, G. V. (2005). Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi. Journal of Phycology, 41, 1000–1009.CrossRefGoogle Scholar
  88. Erba, E. (2006). The first 150 million years history of calcareous nannoplankton: Biosphere-geosphere interactions. Palaeogeography Palaeoclimatology Palaeoecology, 232, 237–250.CrossRefGoogle Scholar
  89. Estep, K. W., Davis, P. G., Hargraves, P. E., & Sieburth, J. M. (1984). Chloroplast containing microflagellates in natural populations of north Atlantic nanoplankton, their identification and distribution; including a description of five new species of Chrysochromulina (Prymnesiophyceae). Protistologica, 20, 613–634.Google Scholar
  90. Everitt, D., Wright, S., Volkman, J., Thomas, D., & Lindstrøm, E. (1990). Phytoplankton community compositions in the western equatorial Pacific determined from chlorophyll and carotenoid pigment distributions. Deep Sea Research Part A: Oceanographic Research Papers, 37, 975–997.CrossRefGoogle Scholar
  91. Farrimond, P., Eglinton, G., & Brassell, S. C. (1986). Alkenones in Cretaceous black shales, Blake-Bahama Basin, western North Atlantic. Organic Geochemistry, 10, 897–903.CrossRefGoogle Scholar
  92. Febvre, J., & Febvre-Chevalier, C. (1979). Ultrastructural study of zooxanthellae of three species of Acantharia (Protozoa: Actinopoda) with details of their taxonomic position in the Prymnesiales (Prymnesiophyceae Hibberd). Journal of the Marine Biological Association of the United Kingdom, 59, 215–226.CrossRefGoogle Scholar
  93. Feng, Y., Warner, M. E., Zhang, Y., Sun, J., Fu, F. X., Rose, J. M., & Hutchins, D. A. (2008). Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology, 43, 78–98.CrossRefGoogle Scholar
  94. Fichtinger-Schepman, A. M. J., Kamerling, J. P., Versluis, C., & Vliegenthart, J. F. (1981). Structural studies of the methylated, acidic polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. Carbohydrate Research, 93, 105–123.CrossRefGoogle Scholar
  95. Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281, 237–240.PubMedCrossRefGoogle Scholar
  96. Findlay, C. S., Young, J. R., & Scott, F. J. (2005). Haptophytes: Order Coccolithophorales. In F. J. Scott & H. J. Marchant (Eds.), Antarctic marine protists (pp. 276–294). Canberra: Australian Biological Resources Study.Google Scholar
  97. Frada, M., Probert, I., Allen, M. J., Wilson, W. H., & De Vargas, C. (2008). The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proceedings of the National Academy of Sciences of the United States of America, 105, 15944–15949.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Frada, M. J., Bidle, K. D., Probert, I., & de Vargas, C. (2012). In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta). Environmental Microbiology, 14, 1558–1569.PubMedCrossRefGoogle Scholar
  99. Fresnel, J., & Billard, C. (1991). Pleurochrysis placolithoides sp. nov. (Prymnesiophyceae), a new marine coccolithophorid with remarks on the status of cricolith-bearing species. British Phycological Journal, 26, 67–80.CrossRefGoogle Scholar
  100. Fresnel, J., & Probert, I. (2005). The ultrastructure and life cycle of the coastal coccolithophorid Ochrosphaera neapolitana (Prymnesiophyceae), European Journal of Phycology, 40, 105–122.CrossRefGoogle Scholar
  101. Gaebler-Schwarz, S., Davidson, A., Assmy, P., Chen, J., Henjes, J., Nöthig, E. M., Lunau, M., & Medlin, L. K. (2010). A new cell stage in the haploid-diploid life cycle of the colony-forming Phaeocystis antarctica and its ecological implications. Journal of Phycology, 46, 1006–1016.CrossRefGoogle Scholar
  102. Gao, Y., Tseng, C. K., & Guo, Y. (1991). Some new species of nannoplankton in Jiaozhou Bay, Shandong, China. Protoplasma, 161, 1–11.CrossRefGoogle Scholar
  103. Gast, R. J., McDonnell, T. A., & Caron, D. A. (2000). srDna-based taxonomic affinities of algal symbionts from a planktonic foraminifer and a solitary radiolarian. Journal of Phycology, 36, 172–177.CrossRefGoogle Scholar
  104. Gattuso, J. P., Frankignoulle, M., & Wollast, R. (1998). Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecology and Systematics, 29, 405–434.CrossRefGoogle Scholar
  105. Gayral, P., & Fresnel, J. (1979). Exanthemachrysis gayraliae Lepailleur (Prymnesiophyceae, Pavlovales): Ultra-structure et discussion taxinomique. Protistologica, 15, 271–282.Google Scholar
  106. Gayral, P., & Fresnel, J. (1983). Description, sexualité, et cycle de développement d’une nouvelle coccolithophoracée (Prymnesiophyceae): Pleurochrysis pseudoroscoffensis sp. nov. Protistologica, 19, 245–261.Google Scholar
  107. Geisen, M., Billard, C., Brierse, A. T. C., Cros, L., Probert, I., & Young, J. R. (2002). Life cycle associations involving pairs of holococcolithophorid species: Intraspecific variation or cryptic speciations? European Journal of Phycology, 37, 531–550.CrossRefGoogle Scholar
  108. Gibbs, S., Bralower, T. J., Bown, P. R., Zachos, J. C., & Bybell, L. M. (2006). Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: Implications for global productivity gradients. Geology, 34, 233–236.CrossRefGoogle Scholar
  109. Gibbs, S., Poulton, A. J., Bown, P. R., Daniels, C. J., Hopkins, J., Young, J. R., Jones, H. L., Thiemann, G. J., O’Dea, S. A., & Newsam, C. (2013). Species-specific growth response of coccolithophores to Palaeocene-Eocene environmental change. Nature Geoscience, 6, 218–222.CrossRefGoogle Scholar
  110. Gjøsæter, J., Lekve, K., Stenseth, N.-C., Leinaas, H. P., Christie, H., Dahl, E., Danielssen, D. S., Edvardsen, B., Olsgard, F., Oug, E., & Paasche, E. (2000). A long term perspective on the Chrysochromulina bloom on the Norwegian Skagerrak coast 1988: A catastrophe or an innocent incident? Marine Ecology Progress Series, 207, 201–218.CrossRefGoogle Scholar
  111. Graham, L. E., & Wilcox, L. W. (2000). “Introduction to the algae: occurrence, relationships, nutrition, definition, general features”. Algae, Prentice-Hall, Upper Saddle River, NJ. p 640.Google Scholar
  112. Granéli, E., Edvardsen, B., Roelke, D. L., & Hagstrom, J. A. (2012). The ecophysiology and bloom dynamics of Prymnesium spp. Harmful Algae, 14, 260–270.Google Scholar
  113. Granéli, E., Paasche, E., & Maestrini, S. (1993). Three years after the Chrysochromulina polylepis bloom in Scandinavian waters in 1988: Some conclusions of recent research and monitoring. In T. J. Smayda & Y. Shimizu (Eds.), Toxic phytoplankton blooms in the sea (pp. 23–32). Amsterdam: Elsevier.Google Scholar
  114. Green, J. (1975). The fine-structure and taxonomy of the haptophycean flagellate Pavlova lutheri (Droop) comb. nov. (= Monochrysis lutheri Droop). Journal of the Marine Biological Association of the United Kingdom, 55, 785–793.CrossRefGoogle Scholar
  115. Green, J. (1976). Notes on the flagellar apparatus and taxonomy of Pavlova mesolychnon van der Veer, and on the status of Pavlova Butcher and related genera within the Haptophyceae. Journal of the Marine Biological Association of the United Kingdom, 56, 595–602.CrossRefGoogle Scholar
  116. Green, J. (1980). The fine structure of Pavlova pinguis Green and a preliminary survey of the order Pavlovales (Prymnesiophyceae). British Phycological Journal, 15, 151–191.CrossRefGoogle Scholar
  117. Green, J., Course, P., & Tarran, G. (1996). The life-cycle of Emiliania huxleyi: A brief review and a study of relative ploidy levels analysed by flow cytometry. Journal of Marine Systems, 9, 33–44.CrossRefGoogle Scholar
  118. Green, J., & Parke, M. (1975). New observations upon members of the genus Chrysotila Anand, with remarks upon their relationships within the Haptophyceae. Journal of the Marine Biological Association of the United Kingdom, 55, 109–121.CrossRefGoogle Scholar
  119. Green, J., Perch-Nielsen, K., & Westbroek, P. (1990). Phylum Prymnesiophyta. In L. Margulis, J. Corliss, M. Melkonian, & D. Chapman (Eds.), Handbook of Protoctista (pp. 293–317). Boston: Jones and Bartlett Publishers.Google Scholar
  120. Green, J., & Pienaar, R. (1977). The taxonomy of the order Isochrysidales (Prymnesiophyceae) with special reference to the genera Isochrysis Parke, Dicrateria Parke and Imantonia Reynolds. Journal of the Marine Biological Association of the United Kingdom, 57, 7–17.CrossRefGoogle Scholar
  121. Green, J. C., & Course, P. A. (1983). Extracellular calcification in Chrysotila lamellosa Prymnesiophyceae. British Phycological Journal, 18, 367–382.CrossRefGoogle Scholar
  122. Green, J. C., & Hibberd, D. J. (1977). The ultrastructure and taxonomy of Diacronema vlkianum (Prymnesiophyceae) with special reference to the haptonema and flagellar apparatus. Journal of the Marine Biological Association of the United Kingdom, 57, 1125–1136.CrossRefGoogle Scholar
  123. Green, J. C., Hibberd, D. J., & Pienaar, R. N. (1982). The taxonomy of Prymnesium (Prymnesiophyceae) including a description of a new cosmopolitan species, P. patellifera sp. nov., and further observations on P. parvum N. Carter. British Phycological Journal, 17, 363–382.CrossRefGoogle Scholar
  124. Green, J. C., & Hori, T. (1990). The architecture of the flagellar apparatus of Prymnesium patellifera (Prymnesiophyta). Botanical Magazine Tokyo, 103, 191–207.CrossRefGoogle Scholar
  125. Green, J. C., & Hori, T. (1994). Flagella and flagellar roots. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 47–71). Oxford: Clarendon.Google Scholar
  126. Green, J. C., & Parke, M. (1975b). A reinvestigation by light and electron-microscopy of Ruttnera spectabilis Geitler (Haptophyceae), with special reference to the fine structure of the zoids. Journal of the Marine Biological Association of the United Kingdom, 54, 539–550.CrossRefGoogle Scholar
  127. Gregson, A. J., Green, J. C., & Leadbeater, B. S. C. (1993). Structure and physiology of the haptonema in Chrysochromulina (Prymnesiophyceae). II. Mechanisms of haptonematal coiling and the regeneration process. Journal of Phycology, 29, 686–700.CrossRefGoogle Scholar
  128. Guillard, R. R. L. (2005). Purification methods for microalgae. In R. A. Andersen (Ed.), Algal culturing techniques (pp. 117–132). Burlington: Academic.Google Scholar
  129. Guschina, I. A., & Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45, 160–186.PubMedCrossRefGoogle Scholar
  130. Hagino, K., & Young, J. R. (2015). Biology and paleontology of Coccolithophores (Haptophytes). In S. Ohtsuka, T. Suzaki, T. Horiguchi, N. Suzuki & F. Not (Eds.), Marine Protists (pp. 311–330). Tokyo: SpringerGoogle Scholar
  131. Hannisdal, B., Henderiks, J., & Liow, L. H. (2012). Long-term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2. Global Change Biology, 18, 3504–3516.CrossRefGoogle Scholar
  132. Hansen, E., Ernstsen, A., & Eilertsen, H. C. (2004). Isolation and characterisation of a cytotoxic polyunsaturated aldehyde from the marine phytoplankter Phaeocystis pouchetii (Hariot) Lagerheim. Toxicology, 199, 207–217.PubMedCrossRefGoogle Scholar
  133. Hansen, L. R., Kristiansen, J., & Rasmussen, J. V. (1994). Potential toxicity of the freshwater Chrysochromulina species C. parva (Prymnesiophyceae). Hydrobiologia, 287, 157–159.CrossRefGoogle Scholar
  134. Harris, R. P. (1994). Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Marine Biology, 119, 431–439.CrossRefGoogle Scholar
  135. Henderiks, J. (2008). Coccolithophore size rules – Reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths. Marine Micropaleontology, 67, 143–154.CrossRefGoogle Scholar
  136. Henderiks, J., Lindberg, L., & Törner, A. (2004). Neogene patterns of coccolith size evolution and carbonate burial in the deep sea. Journal of Nannoplankton Research, 26, 55–56.Google Scholar
  137. Henderiks, J., & Pagani, M. (2008). Coccolithophore cell size and the Paleogene decline in atmospheric CO2. Earth and Planetary Science Letters, 269, 575–583.CrossRefGoogle Scholar
  138. Henderiks, J., & Rickaby, R. E. M. (2007). A coccolithophore concept for constraining the Cenozoic carbon cycle. Biogeosciences, 4, 323–329.CrossRefGoogle Scholar
  139. Henriksen, K., Stipp, S., Young, J., & Marsh, M. (2004). Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function. American Mineralogist, 89, 1709–1716.CrossRefGoogle Scholar
  140. Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., & Quartly, G. D. (2011). A reduced estimate of the strength of the ocean’s biological carbon pump. Geophysical Research Letters, 4, 38. doi: 10.1029/2011GL046735Google Scholar
  141. Herfort, L., Thake, B., & Roberts, J. (2002). Acquisition and use of bicarbonate by Emiliania huxleyi. New Phytologist, 156, 427–436.CrossRefGoogle Scholar
  142. Hibberd, D. J. (1980). Prymnesiophytes (=Haptophytes). In E. R. Cox (Ed.), Developments in marine biology (Vol. 2, pp. 273–317). New York: Elsevier North Holland.Google Scholar
  143. Hoepffner, N., & Haas, L. W. (1990). Electron microscopy of nanoplankton from the North Pacific central gyre. Journal of Phycology, 26, 421–439.CrossRefGoogle Scholar
  144. Holdway, P. A., Watson, R. A., & Moss, B. (1978). Aspects of the ecology of Prymnesium parvum (Haptophyta) and water chemistry in the Norfolk Broads, England. Freshwater Biology, 8, 295–311.CrossRefGoogle Scholar
  145. Holligan, P. M., Fernandez, E., Aiken, J., Balch, W. M., Boyd, P., Burkill, P. H., Finch, M., Groom, S. B., Malin, G., Muller, K., Purdie, D. A., Robinson, C., Trees, C. C., Turner, S. M., & Vanderwal, P. (1993). A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North-Atlantic. Global Biogeochemical Cycles, 7, 879–900.CrossRefGoogle Scholar
  146. Holligan, P. M., Viollier, M., Harbour, D. S., Camus, P., & Champagne-Philippe, M. (1983). Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature, 304, 339–342.CrossRefGoogle Scholar
  147. Hoppe, C. J. M., Langer, G., & Rost, B. (2011). Emiliania huxleyi shows identical responses to elevated pCO2 in TA and DIC manipulations. Journal of Experimental Marine Biology and Ecology, 406, 54–62.CrossRefGoogle Scholar
  148. Hori, T., & Green, J. (1991). The ultrastructure of the flagellar root system of Isochrysis galbana (Prymnesiophyta). Journal of the Marine Biological Association of the United Kingdom, 71, 137.CrossRefGoogle Scholar
  149. Houdan, A., Billard, C., MArie, D., Not, F., Sáez, A. G., Young, J. R., & Probert, I. (2004a). Holococcolithophore-heterococcolithophore (Haptophyta) life cycles: Flow cytometric analysis of relative ploidy levels. Systematics and Biodiversity, 1, 453–465.CrossRefGoogle Scholar
  150. Houdan, A., Bonnard, A., Fresnel, J., Fouchard, S., Billard, C., & Probert, I. (2004b). Toxicity of coastal coccolithophores (Prymnesiophyceae, Haptophyta). Journal of Plankton Reserch, 26, 875–883.CrossRefGoogle Scholar
  151. Huxley, T. H. (1858). Appendix A. In J. Dayman (Ed.), Deep sea soundings in the North Atlantic Ocean between Ireland and Newfoundland (pp. 63–68). London: Her Majesty’s Stationery Office.Google Scholar
  152. Hällfors, G., & Niemi, Å. (1974). A Chrysochromulina (Haptophyceae) bloom under the ice in the Tvärminne archipelago, southern coast of Finland. Memoranda Societas pro Fauna et Flora Fennica, 50, 89–104.Google Scholar
  153. Igarashi, T., Aritake, S., Satake, M., Matsunaga, S., & Yasumoto, T. (1995). Structures and activities of prymnesin-1 and prymnesin-2 isolated from Prymnesium parvum. Seventh International Conference on Toxic Phytoplankton, 12–16 July 1995, Sendai.Google Scholar
  154. Igarashi, T., Satake, M., & Yasumoto, T. (1996). Prymnesin-2: A potent ichthyotoxic and hemolytic glycoside isolated from the red tide alga Prymnesium parvum. Journal of American Chemical Society, 118, 479–480.CrossRefGoogle Scholar
  155. Inouye, I., & Kawachi, M. (1994). The haptonema. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 73–89). Oxford: Clarendon.Google Scholar
  156. Inouye, I., & Pienaar, R. N. (1984). New observations on the coccolithophorid Umbilicosphaera sibogae var. foliosa (Prymnesiophyceae) with reference to cell covering, cell structure and flagellar apparatus. British Phycological Journal, 19, 357–369.CrossRefGoogle Scholar
  157. Inouye, I., & Pienaar, R. N. (1985). Ultrastructure of the flagellar apparatus in Pleurochrysis (Class Prymnesiophyceae). Protoplasma, 125, 24–35.CrossRefGoogle Scholar
  158. Inouye, I., & Pienaar, R. N. (1988). Light and electron microscope observations of the type species of Syracosphaera, S. pulchra (Prymnesiophyceae). British Phycological Journal, 23, 205–217.CrossRefGoogle Scholar
  159. Jacobsen, A., Larsen, A., Martinez-Martinez, J., Verity, P. G., & Frischer, M. E. (2007). Susceptibility of colonies and colonial cells of Phaeocystis pouchetii (Haptophyta) to viral infection. Aquatic Microbial Ecology, 48, 105–112.CrossRefGoogle Scholar
  160. Janse, I., Rijssel, M., Hall, P. J., Gerwig, G. J., Gottschal, J. C., & Prins, R. A. (1996). The storage glucan of Phaeocystis globosa (Prymnesiophyceae) cells. Journal of Phycology, 32, 382–387.CrossRefGoogle Scholar
  161. Jardillier, L., Zubkov, M. V., Pearman, J., & Scanlan, D. J. (2010). Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. Isme Journal, 4, 1180–1192.PubMedCrossRefGoogle Scholar
  162. Jeffrey, S. W., Brown, M. R., & Volkman, J. K. (1994). Haptophyte as feedstocks in mariculture. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 287–302). Oxford: Clarendon.Google Scholar
  163. Jensen, M. Ø., & Moestrup, Ø. (1999). Ultrastructure of Chrysochromulina ahrengotii sp nov (Prymnesiophyceae), a new saddle-shaped species of Chrysochromulina from Danish coastal waters. Phycologia, 38, 195–207.CrossRefGoogle Scholar
  164. Jensen, M. Ø. (1998). The genus Chrysochromulina (Prymnesiophyceae) in Scandinavian coastal waters. PhD. thesis, University of Copenhagen.Google Scholar
  165. Johnsen, T. M., Eikrem, W., Olseng, C. D., Tollefsen, K. E., & Bjerknes, V. (2010). Prymnesium parvum: The Norwegian experience. Journal of the American Water Resources Association, 46, 6–13.CrossRefGoogle Scholar
  166. Jones, H. L. J., Leadbeater, B. S. C., & Green, J. C. (1994). Mixotrophy in haptophytes. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 247–263). Oxford: Clarendon.Google Scholar
  167. Jordan, R. W., Cros, L., & Young, J. R. (2004). A revised classification scheme for living haptophyte. Micropaleontology, 50, 55–79.CrossRefGoogle Scholar
  168. Jordan, R. W., Kleijne, A., Heimdal, B. R., & Green, J. C. (1995). A glossary of the extant Haptophyta of the world. Journal of Marine Biological Association of the United Kingdom, 75, 769–814.CrossRefGoogle Scholar
  169. Kamptner, E. (1941). Die Coccolithineen der Südwestküste von Istrien. Annalen des Naturhistorischen Museums in Wien, 51, 54–149.Google Scholar
  170. Kawachi, M., & Inouye, I. (1993). Chrysochromulina quadrikonta sp. nov., a quadriflagellate member of the genus Chrysochromulina (Prymnesiophyceae = Haptophyceae). Japanese Journal of Phycology, 41, 221–230.Google Scholar
  171. Kawachi, M., & Inouye, I. (1995). Functional roles of the haptonema and the spine scales in the feeding process of Chrysochromulina spinifera (Fournier) Pienaar et Norris (Haptophyta = Prymnesiophyta). Phycologia, 34, 193–200.CrossRefGoogle Scholar
  172. Kawai, H., & Inouye, I. (1989). Flagellar autofluorescence in forty-four chlorophyll c-containing algae. Phycologia, 28, 222–227.CrossRefGoogle Scholar
  173. Kegel, J. U., Blaxter, M., Allen, M. J., Metfies, K., Wilson, W. H., & Valentin, K. (2010). Transcriptional host-virus interaction of Emiliania huxleyi (Haptophyceae) and EhV-86 deduced from combined analysis of expressed sequence tags and microarrays. European Journal of Phycology, 45, 1–12.CrossRefGoogle Scholar
  174. Keller, M. D., Bellows, W. K., & Guillard, R. R. L. (1989). Dimethyl sulfide production in marine phytoplankton. In E. S. Saltzman & W. J. Cooperand (Eds.), Biogenic sulfur in the environment (Vol. 393, pp. 167–182). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  175. Kirkham, A. R., Jardillier, L. E., Tiganescu, A., Pearman, J., Zubkov, M. V., & Scanlan, D. J. (2011). Basin-scale distribution patterns of photosynthetic picoeukaryotes along an Atlantic Meridional Transect. Environmental Microbiology, 13, 975–990.PubMedCrossRefGoogle Scholar
  176. Kirst, G. O. (1996). Osmotic adjustment in phytoplankton and MacroAlgae. In R. Kiene, P. Visscher, M. Keller, & G. Kirst (Eds.), Biological and environmental chemistry of DMSP and related sulfonium compounds (pp. 121–129). Boston: Springer US.CrossRefGoogle Scholar
  177. Klaveness, D. (1972). Coccolithus huxleyi (Lohm.) Kamptn. II. The flagellate cell, aberrant cell types, vegetative propagation and life cycles. British Phycological Journal, 7, 309–318.CrossRefGoogle Scholar
  178. Klaveness, D. (1973). The microanatomy of Calyptrosphaera sphaeroidea, with some supplementary observations on the motile stages of Coccolithus pelagicus. Norwegian Journal of Botany, 20, 151–162.Google Scholar
  179. Klaveness, D. (1976). “Emiliania huxleyi (Lohmann) Hay & Mohler. III.” Mineral deposition and the origin of the matrix during coccolith formation. Protistologica, 12, 217–224.Google Scholar
  180. Klaveness, D., & Paasche, E. (1979). Physiology of coccolithophorids. In M. Levandowsky & S. H. Hutner (Eds.), Biochemistry and physiology of protozoa (Vol. 1, pp. 191–213). New York: Academic.CrossRefGoogle Scholar
  181. Kleijne, A. (1993). Morphology, taxonomy and distribution of extant coccolithophrids (Calcerous nannoplankton). PhD, Free University Amsterdam. 321 pp.Google Scholar
  182. Klaas, C., & Archer, D. E. (2002). Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochemical Cycles, 16, 1116–1130.CrossRefGoogle Scholar
  183. Knappertsbusch, M. (2000). Morphologic evolution of the coccolithophorid Calcidiscus leptoporus from the early miocene to recent. Journal of Paleontology, 74, 712–730.CrossRefGoogle Scholar
  184. Kornmann, P. (1955). Beobachtungen an Phaeocystis-Kulturen. Helgolaender Wissenschaftliche Meeresuntersuchungen, 5, 218–233.CrossRefGoogle Scholar
  185. Kozakai, H., Oshima, Y., & Yasumoto, T. (1982). Isolation and structural elucidation of hemolysin from the phytoflagellate Prymnesium parvum. Agricultural and Biological Chemistry, 46, 233–236.Google Scholar
  186. Kreger, D., & Van der Veer, J. (1970). Paramylon in a chrysophyte. Acta Botanica Neerlandica, 19, 401–402.CrossRefGoogle Scholar
  187. Lange, M., Guillou, L., Vaulot, D., Simon, N., Amann, R. I., Ludwig, W., & Medlin, L. (1996). Identification of the class Prymnesiophyceae and the genus Phaeocystis with ribosomal RNA-targeted nucleic acid probes detected by flow cytometry. Journal of Phycology, 32, 858–868.CrossRefGoogle Scholar
  188. Langer, G., De Nooijer, L. J., & Oetjen, K. (2010). On the role of the cytoskeleton in coccolith morphogenesis: The effect of cytoskeleton inhibitors. Journal of Phycology, 46, 1252–1256.CrossRefGoogle Scholar
  189. Langer, G., Geisen, M., Baumann, K. H., Kläs, J., Riebesell, U., Thoms, S., & Young, J. R. (2006). Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochemistry, Geophysics, Geosystems, 7, Q09006.CrossRefGoogle Scholar
  190. Langer, G., Nehrke, G., Probert, I., Ly, J., & Ziveri, P. (2009). Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences, 6, 2637–2646.CrossRefGoogle Scholar
  191. Larsen, A. (1999). Prymnesium parvum and P. patelliferum (Haptophyta) – One species. Phycologia, 38, 541–543.CrossRefGoogle Scholar
  192. Larsen, A., & Edvardsen, B. (1998). Relative ploidy levels in Prymnesium parvum and P-patelliferum (Haptophyta) analyzed by flow cytometry. Phycologia, 37, 412–424.CrossRefGoogle Scholar
  193. Larsen, A., & Medlin, L. K. (1997). Inter- and intraspecific genetic variation in twelve Prymnesium (Haptophyceae) clones. Journal of Phycology, 33, 1007–1015.CrossRefGoogle Scholar
  194. Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H., & McCarthy, J. J. (2000). Temperature effects on export production in the open ocean. Global Biogeochemical Cycles, 14, 1231–1246.CrossRefGoogle Scholar
  195. Leadbeater, B. S. C. (1970). Preliminary observations on differences of scale morphology at various stages in the life cycle of ‘Apistonema-Syracosphaera’ sensu von Stosch. British Phycological Journal, 5, 57–69.CrossRefGoogle Scholar
  196. Leadbeater, B. S. C. (1971a). Observations by means of ciné photography on the behaviour of the haptonema in plankton flagellates of the class Haptophyceae. Journal of the Marine Biological Association of the United Kingdom, 51, 207–217.CrossRefGoogle Scholar
  197. Leadbeater, B. S. C. (1971b). Observations on the life-history of the haptophycean alga Pleurochrysis scherffelii with special reference to the microanatomy of the different types of motile cell. Annals of Botany, 35, 429–439.Google Scholar
  198. Leadbeater, B. S. C. (1972). Fine structural observations on six new species of Chrysochromulina (Haptophyceae) from Norway with preliminary observations on scale production in C. microcylindra sp. nov. Sarsia, 49, 65–80.CrossRefGoogle Scholar
  199. Leadbeater, B. S. C. (1974). Ultrastructural observations on nanoplankton collected from the coast of Jugoslavia and the bay of Algiers. Journal of Marine Biological Association of the United Kingdom, 54, 179–196.CrossRefGoogle Scholar
  200. Leadbeater, B. S. C. (1994). Cell covering. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 23–46). Oxford: Clarendon.Google Scholar
  201. Lefort, F. (1975). Étude de quelques coccolithophoracées marines rapportées aux genres Hymenomonas et Ochrosphaera. Cahiers de Biologie Marine, 16, 213–229.Google Scholar
  202. LeRoi, J.-M., & Hallegraeff, G. M. (2004). Scale-bearing nanoflagellates from southern Tasmanian coastal waters, Australia. I. Species of the genus Chrysochromulina (Haptophyta). Botanica Marina, 47, 73–102.CrossRefGoogle Scholar
  203. LeRoi, J. M., & Hallegraeff, G. M. (2006). Scale-bearing nanoflagellates from southern Tasmanian coastal waters, Australia. II. Species of chrysophyceae (Chrysophyta), prymnesiophyceae (Haptophyta, excluding Chrysochromulina) and prasinophyceae (Chlorophyta). Botanica Marina, 49, 216–235.CrossRefGoogle Scholar
  204. Liu, H., Probert, I., Uitz, J., Claustre, H., Aris-Brosou, S., Frada, M., Not, F., & de Vargas, C. (2009). Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proceedings of the National Academy of Sciences of the United States of America, 106, 12803–12808.PubMedPubMedCentralCrossRefGoogle Scholar
  205. Liu, W., Liu, Z., Fu, M., & An, Z. (2008). Distribution of the C37 tetra-unsaturated alkenone in Lake Qinghai, China: A potential lake salinity indicator. Geochimica et Cosmochimica Acta, 72, 988–997.CrossRefGoogle Scholar
  206. Lohbeck, K., Riebesell, U., & Reusch, T. B. (2011). Rapid evolution of a key phytoplankton species to ocean acidification. Nature Geoscience, 5, 346–351.Google Scholar
  207. Löbl, M., Cockshutt, A. M., Campbell, D., & Finkel, Z. V. (2010). Physiological basis for high resistance to photoinhibition under nitrogen depletion in E miliania huxleyi. Limnology and Oceanography, 55, 2150–2160.CrossRefGoogle Scholar
  208. Mackinder, L., Wheeler, G., Schroeder, D., Riebesell, U., & Brownlee, C. (2010). Molecular mechanisms underlying calcification in coccolithophores. Geomicrobiology Journal, 27, 585–595.CrossRefGoogle Scholar
  209. Mackinder, L. C. M., Worthy, C. A., Biggi, G., Hall, M., Ryan, K. P., Varsani, A., Harper, G. M., Wilson, W. H., Brownlee, C., & Schroeder, D. C. (2009). A unicellular algal virus, Emiliania huxleyi virus 86, exploits an animal-like infection strategy. Journal of General Virology, 90, 2306–2316.PubMedCrossRefGoogle Scholar
  210. MacLeod, N., Rawson, P., Forey, P., Banner, F., Boudagher-Fadel, M., Bown, P., Burnett, J., Chambers, P., Culver, S., & Evans, S. (1997). The Cretaceous-Tertiary biotic transition. Journal of the Geological Society, 154, 265–292.CrossRefGoogle Scholar
  211. Malin, G., & Steinke, M. (2004). Dimethyl sulfide production: What is the contribution of the coccolithophores? In H. Thierstein & J. Young (Eds.), Coccolithophores (pp. 127–164). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  212. Malin, G., Turner, S., Liss, P., Holligan, P., & Harbour, D. (1993). Dimethylsulphide and dimethylsulphoniopropionate in the Northeast Atlantic during the summer coccolithophore bloom. Deep Sea Research Part I: Oceanographic Research Papers, 40, 1487–1508.CrossRefGoogle Scholar
  213. Manton, I. (1964a). The possible significance of some details of flagellar bases in plants. Journal of the Royal Microscopical Society, 82, 279–285.CrossRefGoogle Scholar
  214. Manton, I. (1964b). Observations with the electron microscope on the division cycle in the flagellate Prymnesium parvum Carter. Journal of the Royal Microscopical Society, 83, 317–325.CrossRefGoogle Scholar
  215. Manton, I. (1967). Further observations on the fine structure of Chrysochromulina chiton with special reference to the haptonema, ‘peculiar’ golgi structure and scale production. Journal of Cell Science, 2, 265–272.PubMedGoogle Scholar
  216. Manton, I., & Leadbeater, B. S. C. (1974). Fine-structural observations on six species of Chrysochromulina from wild Danish marine nanoplankton, including a description of C. campanulifera sp. nov. and a preliminary summary of the nanoplankton as a whole. Det Kongelige Danske Vitenskabernes Selskab, Biologiske Skrifter, 20, 1–26.Google Scholar
  217. Manton, I., & Leedale, G. (1963). Observations on the micro-anatomy of Crystallolithus hyalinus Gaarder and Markali. Archiv für Mikrobiologie, 47, 115–136.CrossRefGoogle Scholar
  218. Manton, I., & Leedale, G. (1969). Observations on the microanatomy of Coccolithus pelagicus and Cricosphaera carterae, with special reference to the origin and nature of coccoliths and scales. Journal of the Marine Biological Association of the United Kingdom, 49, 1–16.CrossRefGoogle Scholar
  219. Manton, I., & Leedale, G. F. (1961). Further observations on the fine structure of Chrysochromulina ericina Parke & Manton. Journal of the Marine Biological Association of the United Kingdom, 41, 145–155.CrossRefGoogle Scholar
  220. Manton, I., & Peterfi, L. S. (1969). Observations on the fine structure of coccoliths, scales and the protoplast of a freshwater coccolithophorid, Hymenomonas roseola Stein, with supplementary observations on the protoplast of Cricosphaera carterae. Proceedings of the Royal Society Series B, 172, 1–15.CrossRefGoogle Scholar
  221. Marchant, H. J., & Thomsen, H. A. (1994). Haptophytes in polar waters. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 209–228). Oxford: Clarendon.Google Scholar
  222. Marlowe, I. T., Green, J. C., Neal, A. C., Brassell, S. C., Eglinton, G., & Course, P. A. (1984). Long-chain (n-C37-C39) alkenones in the Prymnesiophyceae – Distribution of alkenones and other lipids and their taxonomic significance. British Phycological Journal, 19, 203–216.CrossRefGoogle Scholar
  223. Marsh, M., & Dickinson, D. (1997). Polyanion-mediated mineralization – Mineralization in coccolithophore (Pleurochrysis carterae) variants which do not express PS2, the most abundant and acidic mineral-associated polyanion in wild-type cells. Protoplasma, 199, 9–17.CrossRefGoogle Scholar
  224. Marsh, M., Ridall, A., Azadi, P., & Duke, P. (2002). Galacturonomannan and Golgi-derived membrane linked to growth and shaping of biogenic calcite. Journal of Structural Biology, 139, 39–45.PubMedCrossRefGoogle Scholar
  225. Martínez, J. M., Schroeder, D. C., Larsen, A., Bratbak, G., & Wilson, W. H. (2007). Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies. Applied and Environmental Microbiology, 73, 554–562.PubMedCrossRefGoogle Scholar
  226. Masquelier, S., Foulon, E., Jouenne, F., Ferreol, M., Brussaard, C. P. D., & Vaulot, D. (2011). Distribution of eukaryotic plankton in the English Channel and the North Sea in summer. Journal of Sea Research, 66, 111–122.CrossRefGoogle Scholar
  227. Mattioli, E., & Pittet, B. (2002). Contribution of calcareous nannoplankton to carbonate deposition: A new approach applied to the Lower Jurassic of central Italy. Marine Micropaleontology, 45, 175–190.CrossRefGoogle Scholar
  228. McIntyre, A., & Bé, A. W. H. (1967). Modern coccolithophorids of the Atlantic Ocean I Placoliths and cyrtoliths. Deep Sea Research, 14, 561–597.Google Scholar
  229. Medlin, L., Sáez, A. G., & Young, J. (2008). A molecular clock for coccolithophores and implications for selectivity of phytoplankton extinctions across the K/T boundary. Marine Micropaleontology, 67, 69–86.CrossRefGoogle Scholar
  230. Medlin, L., & Zingone, A. (2007). A taxonomic review of the genus Phaeocystis. Biogeochemistry, 83, 3–18.CrossRefGoogle Scholar
  231. Medlin, L. K., Barker, G. L. A., Cambell, L., Green, J. C., Hayes, P. K., Marie, D., Wrieden, S., & Vaulot, D. (1996). Genetic characterisation of Emiliania huxleyi (Haptophyta). Journal of Marine Systematics, 9, 13–31.CrossRefGoogle Scholar
  232. Medlin, L. K., Kooistra, W. H. C. F., Potter, D., Saunders, G. W., & Andersen, R. A. (1997). Phylogenetic relationships of the ‘golden algae’ (haptophytes, heterokont chromophytes) and their plastids. In D. Bhattacharya (Ed.), The origins of algae and their plastids (Vol. 11, pp. 187–219). Vienna: Springer.CrossRefGoogle Scholar
  233. Medlin, L. K., Saez, A. G., & Young, J. R. (2007). Did mixotrophy prevent phytoplankton extinctions across the K/T boundary? Marine Micropaleontology, 67, 69–86.CrossRefGoogle Scholar
  234. Meireles, L., Guedes, A., & Malcata, F. X. (2003). Lipid class composition of the microalga Pavlova lutheri: Eicosapentaenoic and docosahexaenoic acids. Journal of Agricultural and Food Chemistry, 51, 2237–2241.PubMedCrossRefGoogle Scholar
  235. Meldahl, A.-S., Thorsen, V. A. T., Sand, O., & Fonnum, F. (1994). The toxin of the alga Prymnesium patelliferum increases cytosolic Ca2+ in synaptosomes and voltage sensitive Ca2+-currents in cultured pituitary cells. In O. D. Kamp (Ed.), Biological membranes: Structure, biogenesis and dynamics (Vol. H 82, pp. 331–339). Berlin: Springer.CrossRefGoogle Scholar
  236. Mihnea, P. (1997). Major shifts in the phytoplankton community (1980–1994) in the Romanian Black Sea. Oceanolica Acta, 20, 119–129.Google Scholar
  237. Milliman, J. D. (1993). Production and accumulation of calcium carbonate in the ocean: Budget of a non-steady state. Global Biogeochemistry Cycles, 7, 927–957.CrossRefGoogle Scholar
  238. Milliman, J. D., & Droxler, A. W. (1996). Neritic and pelagic carbonate sedimentation in the marine environment: Ignorance is not bliss. Geologische Rundschau, 85, 496–504.CrossRefGoogle Scholar
  239. Moestrup, Ø. (1994). Economic aspects: ‘Blooms’, nuisance species, and toxins. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 265–285). Oxford: Clarendon.Google Scholar
  240. Moestrup, Ø., & Thomsen, H. A. (1986). Ultrastructure and reconstruction of the flagellar apparatus in Chrysochromulina apheles sp. nov. (Prymnesiophyceae = Haptophyceae). Canadian Journal of Botany, 64, 593–610.CrossRefGoogle Scholar
  241. Moestrup, Ø., & Thomsen, H. A. (2003). Taxonomy of toxic haptophytes (prymnesiophytes). In G. M. Hallegraeff, D. M. Anderson, & A. D. Cembella (Eds.), Manual on harmful marine microalgae (pp. 433–463). Paris: UNESCO Publishing.Google Scholar
  242. Moon-van der Staay, S. Y., van der Staay, G. W., Guillou, L., Claustre, H., Medlin, L., & Vaulot, D.(2000). Abundance and diversity of prymnesiophytes in the picoplankton community from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnology and Oceanography, 45, 98–109.CrossRefGoogle Scholar
  243. Morse, J. W., & Mackenzie, F. T. (1990). Geochemistry of sedimentary carbonates (p. 707). Amsterdam: Elsevier Science.Google Scholar
  244. Müller, M., Barcelos e Ramos, J., Schulz, K., Riebesell, U., Kaźmierczak, J., Gallo, F., Mackinder, L., Li, Y., Nesterenko, P., & Trull, T. (2015). Phytoplankton calcification as an effective mechanism to alleviate cellular calcium poisoning. Biogeosciences, 12, 6493–6501.CrossRefGoogle Scholar
  245. Nanninga, H. J., & Tyrrell, T. (1996). Importance of light for the formation of algal blooms by Emiliania huxleyi. Marine Ecology Progress Series, 136, 195–203.CrossRefGoogle Scholar
  246. Nejstgaard, J. C., Gismervik, I., & Solberg, P. T. (1997). Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Marine Ecology Progress Series, 147, 197–217.CrossRefGoogle Scholar
  247. Nicholls, K. H. (2014). Haptophyte Algae. In J. D. Wehr, R. G. Sheath, & P. Kociolek (Eds.), Freshwater algae of North America (pp. 537586). Amsterdam: Elsevier.Google Scholar
  248. Nicholls, K. H., Beaver, J. L., & Estabrook, R. H. (1982). Lakewide odors in Ontario and New Hampshire caused by Chrysochromulina breviturrita Nicholls (Prymnesiophyceae). Hydrobiologia, 96, 91–95.Google Scholar
  249. Nielsen, M. V. (1995). Photosynthetic characteristics of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) exposed to elevated concentrations of dissolved inorganic carbon. Journal of Phycology, 31, 715–719.CrossRefGoogle Scholar
  250. Nimer, N., & Merrett, M. (1993). Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon. New Phytologist, 123, 673–677.CrossRefGoogle Scholar
  251. Okada, H. (2000). Neogene and Quaternary calcareous nannofossils from the Blake Ridge, Sites 994, 995, and 997. In C. K. Paull, R. Matsumoto, P. J. Wallace, & W. P. Dillon (Eds.), Proceedings of the ocean drilling program, scientific results (Vol. 164, pp. 331341)Google Scholar
  252. Okada, H., & Honjo, S. (1973). The distribution of oceanic coccolithophorids in the Pacific. Sea Research, 20, 355–374.Google Scholar
  253. Outka, D., & Williams, D. (1971). Sequential coccolith morphogenesis in Hymenomonas carterae. Journal of Eukaryotic Microbiology, 18, 285–297.Google Scholar
  254. Pagani, M. (2002). The alkenone-CO2 proxy and ancient atmospheric carbon dioxide. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 360, 609–632.CrossRefGoogle Scholar
  255. Palmer, J. R., & Totterdell, I. J. (2001). Production and export in a global ocean ecosystem model. Deep Sea Research Part I: Oceanographic Research Papers, 48, 1169–1198.CrossRefGoogle Scholar
  256. Parke, M. (1949). Studies on marine flagellates. Journal of the Marine Biological Association of the United Kingdom, 28, 255–286.CrossRefGoogle Scholar
  257. Parke, M., & Adams, I. (1960). The motile (Chrystallolithus hyalinus Gaarder & Markali) and non-motile phases in the life history of Coccolithus pelagicus (Wallich) Schiller. Journal of the Marine Biological Association of the United Kingdom, 39, 263–274.CrossRefGoogle Scholar
  258. Parke, M., Green, J. C., & Manton, I. (1971). Observations on the fine structure of zoids of the genus Phaeocystis (Haptophyceae). Journal of the Marine Biological Association of the United Kingdom, 51, 927–941.CrossRefGoogle Scholar
  259. Parke, M., & Dixon P. S. (1976). Check-list of British marine algae-third revision. Marine Biological Association of the United Kingdom. 56: 527–594.CrossRefGoogle Scholar
  260. Parke, M., Manton, I., & Clarke, B. (1955). Studies on marine flagellates II. Three new species of Chrysochromulina. Journal of the Marine Biological Association of the United Kingdom, 34, 579–609.CrossRefGoogle Scholar
  261. Peperzak, L., Colijn, F., Vrieling, E. G., Gieskes, W. W. C., & Peeters, J. C. H. (2000). Observations of flagellates in colonies of Phaeocystis globosa (Prymnesiophyceae); a hypothesis for their position in the life cycle. Journal of Plankton Research, 22, 2181–2203.CrossRefGoogle Scholar
  262. Perch-Nielsen, K. (1985a). Mesozoic calcareous nannofossils. In H. M. Bolli, J. B. Saunders, & K. Perch-Nielsen (Eds.), Plankton stratigraphy (pp. 329–426). Cambridge: Cambridge University Press.Google Scholar
  263. Perch-Nielsen, K. (1985b). Cenozoic calcareous nannofossils. In H. M. Bolli, J. B. Saunders, & K. Perch-Nielsen (Eds.), Plankton stratigraphy (pp. 427–554). Cambridge: Cambridge University Press.Google Scholar
  264. Perch-Nielsen, K., McKenzie, J. A., & He, Q. (1982). Biostratigraphy and isotope stratigraphy and the “catastrophic” extinction of calcareous nannoplankton at the Cretaceous/Tertiary boundary. Geological Society of America Special Papers, 190, 353–371.CrossRefGoogle Scholar
  265. Pienaar, R. (1980). Observations on the structure and composition of the cyst of Prymnesium (Prymnesiophyceae). Proceedings of the Electron Microscopy Society of Southern Africa, 10, 73–74.Google Scholar
  266. Pienaar, R. N. (1994). Ultrastructure and calcification of coccolithophores. In A. Winter & W. G. Siesser (Eds.), Coccolithophores (pp. 13–37). Cambridge: Cambridge University Press.Google Scholar
  267. Pienaar, R. N., & Birkhead, M. (1994). Ultrastructure of Prymnesium nemamethecum sp. nov. (Prymnsiophyceae). Journal of Phycology, 30, 291–300.CrossRefGoogle Scholar
  268. Pienaar, R. N., & Norris, R. E. (1979). Ultrastructure of the flagellate Chrysochromulina spinifera (Fournier) comb. nov. (Prymnesiophyceae) with special reference to scale production. Phycologia, 18, 99–108.CrossRefGoogle Scholar
  269. Pintner, I. J., & Provasoli, L. (1968). Heterotrophy in subdued light of 3 Chrysochromulina species. Bulletin of the Misaki Marine Biological Institute, 12, 25–31.Google Scholar
  270. Ponis, E., Probert, I., Véron, B., Le Coz, J.-R., Mathieu, M., & Robert, R. (2006). Nutritional value of six Pavlovophyceae for Crassostrea gigas and Pecten maximus larvae. Aquaculture, 254, 544–553.CrossRefGoogle Scholar
  271. Preisig, H. R. (2002). Phylum Haptophyta. The freshwater algal flora of the British Isles. In D. M. John, B. A. Whitton, & A. J. Brook (Eds.), An identification guide to freshwater and terrestrial algae. Cambridge: Cambridge University Press.Google Scholar
  272. Probert, I., Fresnel, J., Billard, C., Geisen, M., & Young, J. R. (2007). Light and electron microscope observations of Algirosphaera robusta (Prymnesiophyceae). Journal of Phycology, 43, 319–332.CrossRefGoogle Scholar
  273. Probert, I., & Houdan, A. (2004). The laboratory culture of coccolithophores. In H. R. Thierstein & E. B. Young (Eds.), Coccolithophores: From molecular process to global impact (pp. 217–249). Berlin/Heidelberg/New York: Springer.CrossRefGoogle Scholar
  274. Provasoli, L., McLaughlin, J. J. A., & Droop, M. R. (1957). The development of artificial media for marine algae. Archiv für Mikrobiologie, 25, 392–428.PubMedCrossRefGoogle Scholar
  275. Purdie, D. A., & Finch, M. S. (1994). Impact of a coccolithophorid bloom on dissolved carbon dioxide in sea water enclosures in a Norwegian fjord. Sarsia, 79, 379–387.CrossRefGoogle Scholar
  276. Paasche, E. (1964). A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi. Physiologia Plantarum Supplementum 3: 1–82.Google Scholar
  277. Paasche, E. (2002). A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia, 40, 503–529.CrossRefGoogle Scholar
  278. Quinn, P. K., & Bates, T. S. (2011). The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature, 480, 51–56.PubMedCrossRefGoogle Scholar
  279. Read, B. A., Kegel, J., Klute, M. J., Kuo, A., Lefebvre, S. C., Maumus, F., Mayer, C., Miller, J., Monier, A., & Salamov, A. (2013). Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature, 499, 209–213.PubMedCrossRefGoogle Scholar
  280. Reitan, T., Schweder, T., & Henderiks, J. (2012). Phenotypic evolution studied by layered stochastic differential equations. Annals of Applied Statistics, 6, 1531–1551.CrossRefGoogle Scholar
  281. Rickaby, R. E. M., Bard, E., Sonzogni, C., Rostek, F., Beaufort, L., Barker, S., Rees, G., & Schrag, D. P. (2007). Coccolith chemistry reveals secular variations in the global ocean carbon cycle? Earth and Planetary Science Letters, 253, 83–95.CrossRefGoogle Scholar
  282. Ridgwell, A., & Zeebe, R. E. (2005). The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth and Planetary Science Letters, 234, 299–315.CrossRefGoogle Scholar
  283. Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, E., & Morel, F. M. M. (2000). Reduced calcification in marine plankton in response to increased atmospheric CO2. Nature, 407, 634–637.Google Scholar
  284. Riegman, R., Stolte, W., Noordeloos, A. A. M., & Slezak, D. (2000). Nutrient uptake and alkaline phosphatase (EC activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. Journal of Phycology, 36, 87–96.CrossRefGoogle Scholar
  285. Roberts, K. R., & Mills, J. T. (1992). The flagellar apparatus of Hymenomonas coronata (Prymnesiophyta). Journal of Phycology, 28, 635–642.CrossRefGoogle Scholar
  286. Robertson, J. E., Robinson, C., Turner, D. R., Holligan, P., Watson, A. J., Boyd, P., Fernandez, E., & Finch, M. (1994). The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. Deep Sea Research Part I: Oceanographic Research Papers, 41, 297–314.CrossRefGoogle Scholar
  287. Rokitta, S. D., de Nooijer, L. J., Trimborn, S., de Vargas, C., Rost, B., & John, U. (2011). Transcriptome analyses reveal differential gene expression patterns between the life-cycle stages of Emiliania huxleyi (Haptophyta) and reflect specialization to different ecological niches. Journal of Phycology, 47, 829–838.PubMedCrossRefGoogle Scholar
  288. Rokitta, S. D., John, U., & Rost, B. (2012). Ocean acidification affects Redox-Balance and Ion-Homeostasis in the life-cycle stages of Emiliania huxleyi. PloS One, 7, e52212.PubMedPubMedCentralCrossRefGoogle Scholar
  289. Rokitta, S. D., & Rost, B. (2012). Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 57, 607–618.CrossRefGoogle Scholar
  290. Rokitta, S. D., Von Dassow, P., Rost, B., & John, U. (2014). Emiliania huxleyi endures N-limitation with an efficient metabolic budgeting and effective ATP synthesis. BMC Genomics, 15, 1051.PubMedPubMedCentralCrossRefGoogle Scholar
  291. Romanovicz, D. (1981). Scale formation in flagellates. In O. Kiermayer (Ed.), Cytomorphogenesis in plants (pp. 27–62). Wien: Springer.CrossRefGoogle Scholar
  292. Rontani, J. F., Volkman, J. K., Prahl, F. G., & Wakeham, S. G. (2013). Biotic and abiotic degradation of alkenones and implications for paleoproxy applications: A review. Organic Geochemistry, 59, 95–113.CrossRefGoogle Scholar
  293. Rost, B., & Riebesell, U. (2004). Coccolithophores and the biological pump: Responses to environmental changes. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores: From molecular processes to global impact (pp. 76–99). Berlin: Springer.Google Scholar
  294. Roth, P. H., & Bowdler, J. L. (1981). Middle Cretaceous calcareous nannoplankton biogeography and oceanography of the Atlantic Ocean. SEPM (Society of Economic Paleotologists and Minerologists) Special Publication, 32, 517–546.Google Scholar
  295. Rousseau, V., Chretiennot-Dinet, M. J., Jacobsen, A., Verity, P., & Whipple, S. (2007). The life cycle of Phaeocystis: State of knowledge and presumptive role in ecology. Biogeochemistry, 83, 29–47.CrossRefGoogle Scholar
  296. Rowson, J. D., Leadbeater, B. S. C., & Green, J. C. (1986). Calcium carbonate deposition in the motile (Crystallolithus) phase of Coccolithus pelagicus (Prymnesiophyceae). British Phycological Journal, 21, 359–370.CrossRefGoogle Scholar
  297. Sáez, A. G., Probert, I., Young, J. R., Edvardsen, B., Eikrem, W., & Medlin, L. K. (2004). A review of the phylogeny of the Haptophyta. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores: From molecular processes to global impact (pp. 251–269). Berlin: Springer.CrossRefGoogle Scholar
  298. Sanderson, M. (2006). Estimating rates of molecular evolution, r8s version 1.71.
  299. Savage, R. (1930). The influence of Phaeocystis on the migrations of the herring. Fishery Investigations, London Series, 2, 1–14.Google Scholar
  300. Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V., & Lancelot, C. (2005). Phaeocystis blooms in the global ocean and their controlling mechanisms: A review. Journal of Sea Research, 53, 43–66.CrossRefGoogle Scholar
  301. Schwarz, E. (1932). Beiträge zur Entwicklungsgeschichte der Protophyten I X Der Formwechsel von Ochrosphaera neapolitana. Archiv für Protistenkunde, 77, 434–462.Google Scholar
  302. Seoane, S., Zapata, M., & Orive, E. (2009). Growth rates and pigment patterns of haptophytes isolated from estuarine waters. Journal of Sea Research, 62, 286–294.CrossRefGoogle Scholar
  303. Shalchian-Tabrizi, K., Reier-Røberg, K., Ree, D. K., Klaveness, D., & Brate, J. (2011). Marine-freshwater colonizations of haptophytes inferred from phylogeny of environmental 18S rDNA sequences. Journal of Eukaryotic Microbiology, 58, 315–318.PubMedCrossRefGoogle Scholar
  304. Shi, X. L., Marie, D., Jardillier, L., Scanlan, D. J., & Vaulot, D. (2009). Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. Plos One, 4, e7657.PubMedPubMedCentralCrossRefGoogle Scholar
  305. Shilo, M. (1981). The toxic principles of Prymnesium parvum. In W. W. Carmichael (Ed.), The water environment (pp. 37–47). New York: Plenum.CrossRefGoogle Scholar
  306. Sieburth, J. M. (1961). Antibiotic properties of acrylic acid, a factor in the gastro-intestinal antibiosis of polar marine animals. Journal of Bacteriology, 82, 72–79.PubMedPubMedCentralGoogle Scholar
  307. Siesser, W. G. (1994). Historical background of coccolithophore studies. In Coccolithophores (pp. 1–11). Cambridge: Cambridge Univiversity Press.Google Scholar
  308. Sikes, C. S., Roer, R. D., & Wilbur, K. M. (1980). Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition. Limnology and Oceanography, 25, 248–261.CrossRefGoogle Scholar
  309. Silva, P. C., Throndsen, J., & Eikrem, W. (2007). Revisiting the nomenclature of haptophytes. Phycologia, 46, 471–475.CrossRefGoogle Scholar
  310. Southard, G. M., Fries, L. T., & Barkoh, A. (2010). Prymnesium parvum: The Texas experience. Journal of the American Water Resources Association, 46, 14–23.CrossRefGoogle Scholar
  311. Stefels, J. (2000). Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. Journal of Sea Research, 43, 183–197.CrossRefGoogle Scholar
  312. Stefels, J., & van Boekel, W. (1993). Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Marine Ecology Progress Series, 97, 11–18.CrossRefGoogle Scholar
  313. Stoll, H. M., & Ziveri, P. (2004). Coccolithophorid-based geochemical paleoproxies. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores: From molecular processes to global impact (pp. 529–562). Berlin: Springer.CrossRefGoogle Scholar
  314. Suffrian, K., Schulz, K. G., Gutowska, M. A., Riebesell, U., & Bleich, M. (2011). Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability. New Phytologist, 190, 595–608.PubMedCrossRefGoogle Scholar
  315. Sukhanova, I., & Flint, M. (1998). Anomalous blooming of coccolithophorids over the eastern Bering Sea shelf. Oceanology, 38, 502–505.Google Scholar
  316. Sun, Q., Chu, G., Liu, G., Li, S., & Wang, X. (2007). Calibration of alkenone unsaturation index with growth temperature for a lacustrine species, Chrysotila lamellosa (Haptophyceae). Organic Geochemistry, 38, 1226–1234.CrossRefGoogle Scholar
  317. Sunda, W., Kieber, D. J., Kiene, R. P., & Huntsman, S. (2002). An antioxidant function for DMSP and DMS in marine algae. Nature, 418, 317–320.PubMedCrossRefGoogle Scholar
  318. Sym, S., & Kawachi, M. (2000). Ultrastructure of Calyptrosphaera radiata, sp. nov. (Prymnesiophyceae, Haptophyta). European Journal of Phycology, 35, 283–293.CrossRefGoogle Scholar
  319. Sym, S. D., Pienaar, R. N., Edvardsen, B., & Egge, E. S. (2011). Fine structure and systematics of Prymnesium radiatum sp. nov. (Prymnesiophyceae) from False Bay and Franskraal, South Africa. European Journal of Phycology, 46, 229–248.CrossRefGoogle Scholar
  320. Takahashi, E. (1981). Floristic study of ice algae in the sea ice of a lagoon, Lake Saroma, Hokkaido, Japan (Biology and Medical Science). Memoirs of National Institute of Polar Research. Series E, Biology and medical science, 34, 49–63.Google Scholar
  321. Takayama, T. (1993). Notes on Neogene calcareous nannofossil biostratography of the Ontong Java Plateau and size variations of Reticulofenestra coccoliths. In W. H. Berger, L. W. Kroenke, L. A. Mayer, et al. (Eds.), Proceedings of the ocean drilling program, scientific results (Vol. 130, pp. 179229).Google Scholar
  322. Takezaki, N., Rzhetsky, A., & Nei, M. (1995). Phylogenetic test of the molecular clock and linearized trees. Molecular Biology and Evolution, 12, 823–833.PubMedGoogle Scholar
  323. Tappan, H. (1980). Paleobiology of plant protists. San Francisco: W H Freeman.Google Scholar
  324. Taylor, A. R., Chrachi, A., Wheeler, G., Goddard, H., & Brownlee, C. (2011). A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores. PLoS Biology, 9, e1001085.PubMedPubMedCentralCrossRefGoogle Scholar
  325. Thierstein, H. R., Geitzenauer, K. R., Molfino, B., & Shackleton, N. J. (1977). Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes. Geology, 5, 400–404.CrossRefGoogle Scholar
  326. Thompson, A. W., Foster, R. A., Krupke, A., Carter, B. J., Musat, N., Vaulot, D., Kuypers, M. M. M., & Zehr, J. P. (2012). Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science, 337, 1546–1550.PubMedCrossRefGoogle Scholar
  327. Thomsen, H. (1986). A survey of the smallest eukaryotic organisms of the marine phytoplankton. In T. Platt, & W. Li (Eds.), Photosynthetic Picoplankton. Canadian Bulletin of Fisheries and Aquatic Sciences. 214, 121–158.Google Scholar
  328. Thomsen, H., Bjørn, P., Højlund, L., Olensen, J., & Pedersen, J. (1995). Ericiolus gen. nov. (Prymnesiophyceae), a new coccolithophorid genus from polar and temperate regions. European Journal of Phycology, 30, 29–34.CrossRefGoogle Scholar
  329. Thomsen, H. A., Buck, K. R., & Chavez, F. P. (1994). Haptophytes as components of marine phytoplankton. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 187–208). Oxford: Clarendon.Google Scholar
  330. Thomsen, H. A., Østergaard, J. B., & Hansen, L. E. (1991). Heteromorphic life histories in arctic coccolithophorids (Prymnesiophyceae). Journal of Phycology, 27, 634–642.CrossRefGoogle Scholar
  331. Tillmann, U. (1998). Phagotrophy by a plastidic haptophyte, Prymnesium patelliferum. Aquatic Microbial Ecology, 14, 155–160.CrossRefGoogle Scholar
  332. Townsend, D. W., Keller, M. D., Holligan, P. M., Ackleson, S. G., & Balch, W. M. (1994). Blooms of the coccolithophore Emiliania huxleyi with respect to hydrography in the Gulf of Maine. Continental Shelf Research, 14, 979–1000.CrossRefGoogle Scholar
  333. Trimborn, S., Langer, G., & Rost, B. (2007). Effect of varying calcium concentrations and light intensities on calcification and photosynthesis in Emiliania huxleyi. Limnology and Oceanography, 52, 2285–2293.CrossRefGoogle Scholar
  334. Tyrrell, T., Holligan, P., & Mobley, C. (1999). Optical impacts of oceanic coccolithophore blooms. Journal of Geophysical Research, Oceans, 104, 3223–3241.CrossRefGoogle Scholar
  335. Ulitzur, S., & Shilo, M. (1966). Mode of action of Prymnesium parvum ichtyotoxin. Journal of Protozoology, 13, 332–336.CrossRefGoogle Scholar
  336. Ulitzur, S., & Shilo, M. (1970). Procedure for purification and separation of Prymnesium parvum toxins. Biochimica et Biophysica Acta, 201, 350–363.PubMedCrossRefGoogle Scholar
  337. Van der Meer, M. T. J., Baas, M., Rijpstra, W. I. C., Marino, G., Rohling, E. J., Sinninghe Damsté, J. S., & Schouten, S. (2007). Hydrogen isotopic compositions of long-chain alkenones record freshwater flooding of the Eastern Mediterranean at the onset of sapropel deposition. Earth and Planetary Science Letters, 262, 594–600.CrossRefGoogle Scholar
  338. Van der Veer, J. (1979). Pavlova and the taxonomy of flagellates especially the chrysomonads. Thesis, State University at Groningen. 146.Google Scholar
  339. Van Der Wal, P., De Jong, E., Westbroek, P., De Bruijn, W., & Mulder-Stapel, A. (1983). Polysaccharide localization, coccolith formation, and golgi dynamics in the coccolithophorid Hymenomonas carterae. Journal of Ultrastructure Research, 85, 139–158.PubMedCrossRefGoogle Scholar
  340. Van Emburg, P., De Jong, E., & Daems, W. T. (1986). Immunochemical localization of a polysaccharide from biomineral structures (coccoliths) of Emiliania huxleyi. Journal of Ultrastructure and Molecular Structure Research, 94, 246–259.CrossRefGoogle Scholar
  341. Van Lenning, K., Latasa, M., Estrada, M., Saez, A. G., Medlin, L., Probert, I., Veron, B., & Young, J. (2003). Pigment signatures and phylogenetic relationships of the pavlovophyceae (Haptophyta). Journal of Phycology, 39, 379–389.CrossRefGoogle Scholar
  342. Van Lenning, K., Probert, I., Latasa, M., Estrada, M., & Young, J. R. (2004). Pigment diversity of coccolithophores in relation to taxonomy, phylogeny and ecological preferences. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores: From molecular processes to global impact (pp. 51–73). Berlin: Springer.CrossRefGoogle Scholar
  343. Veldhuis, M. J. W., Colijn, F., & Venekamp, L. A. H. (1986). The spring bloom of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Netherlands Journal of Sea Research, 20, 37–48.CrossRefGoogle Scholar
  344. Vergroeben, H. Marcelino & Costa J. F. (2014). Evolutionary dynamics of algal traits and diversity. Perspectives in Phycology 1: 53–60.CrossRefGoogle Scholar
  345. Von Dassow, P., Ogata, H., Probert, I., Wincker, P., Da Silva, C., Audic, S., Claverie, J.-M., & de Vargas, C. (2009). Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biology, 10, R114.CrossRefGoogle Scholar
  346. Vårum, K., Kvam, B. J., Myklestad, S., & Paulsen, B. S. (1986). Structure of a food-reserve β-d-glucan produced by the haptophyte alga Emiliania huxleyi (Lohmann) Hay et Mohler. Carbohydrate Research, 152, 243–248.CrossRefGoogle Scholar
  347. Westbroek, P., Brown, C. W., Bleijswijk, J. v., Brownlee, C., Brummer, G. J., Conte, M., Egge, J., Fernández, E., Jordan, R., Knappertsbusch, M., Stefels, J., Veldhuis, M., van der Wal, P., & Young, J. (1993). A model system approach to biological climate forcing. The example of Emiliania huxleyi. Global and Planetary Change, 8, 27–46.CrossRefGoogle Scholar
  348. Wilbur, K. M., & Watabe, N. (1963). Experimental studies on calcification in molluscs and the alga Coccolithus huxleyi. Annals of the New York Academy of Sciences, 109, 82–112.PubMedCrossRefGoogle Scholar
  349. Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E., & Brown, C. W. (2014). Poleward expansion of the coccolithophore Emiliania huxleyi. Journal of Plankton Research, 36, 316–325.CrossRefGoogle Scholar
  350. Winter, A., Jordan, R. W., & Roth, P. H. (1994). Biogeography of living coccolithophores in ocean waters. In A. Winter & W. G. Siesser (Eds.), Coccolithophores (pp. 161–177). Cambridge: Cambridge University Press.Google Scholar
  351. Wolf-Gladrow, D. A., Riebesell, U., Burkhardt, S., & Bijma, J. (1999). Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus Series B: Chemical and Physical Meteorology, 51, 461–476.CrossRefGoogle Scholar
  352. Wollast, R. (1994). The relative importance of biomineralization and dissolution of CaCO3 in the global carbon cycle. Bulletin de l’Institut océanographique, Monaco, 13, 13–35.Google Scholar
  353. Xu, Y., Boucher, J. M., & Morel, F. M. M. (2010). Expression and diversity of alkaline phosphatase EHAP1 in Emiliania huxleyi (Prymnesiophyceae). Journal of Phycology, 46, 85–92.CrossRefGoogle Scholar
  354. Yariv, J., & Hestrin, S. (1961). Toxicity of the extracellular phase of Prymnesium parvum cultures. The Journal of General Microbiology, 24, 165–175.PubMedCrossRefGoogle Scholar
  355. Yasumoto, T., Underdal, B., Aune, T., Hormazabal, V., Skulberg, O. M., & Oshima, Y. (1990). Screening for hemolytic and ichthyotoxic components of Chrysochromulina polylepis and Gyrodinium aureolum from Norwegian coastal waters. In E. Granéli, B. Sundström, L. Edler, & D. M. Anderson (Eds.), Toxic marine phytoplankton (pp. 436–440). New York: Elsevier.Google Scholar
  356. Yoshida, M., Noel, M. H., Nakayama, T., Naganuma, T., & Inouye, I. (2006). A haptophyte bearing siliceous scales: Ultrastructure and phylogenetic position of Hyalolithus neolepis gen. et sp. nov. (Prymnesiophyceae, Haptophyta). Protist, 157, 213–234.PubMedCrossRefGoogle Scholar
  357. Young, J., & Ziveri, P. (2000). Calculation of coccolith volume and its use in calibration of carbonate flux estimates. Deep-Sea Research II, 47, 1679–1700.CrossRefGoogle Scholar
  358. Young, J. R. (1994). Functions of coccoliths. In A. Winter & W. G. Seisser (Eds.), Coccolithophores (pp. 63–82). Cambridge: Cambridge University Press.Google Scholar
  359. Young, J. R., Bergen, J. A., Bown, P. R., Burnett, J. A., Fiorentino, A., Jordan, R. W., Kleijne, A., Van Niel, B., Romein, A. T., & Von Salts, K. (1997). Guidelines for coccolith and calcareous nannofossil terminology. Palaeontology, 40, 875–912.Google Scholar
  360. Young, J. R., Davis, S. A., Bown, P. R., & Mann, S. (1999). Coccolith ultrastructure and biomineralization. Journal of Structural Biology, 126, 195–215.PubMedCrossRefGoogle Scholar
  361. Young, J. R., Didymus, J. M., Brown, P. R., Prins, B., & Mann, S. (1992). Crystal assembly and phylogenetic evolution in heterococcoliths. Nature, 356, 516–518.CrossRefGoogle Scholar
  362. Young, J. R., Geisen, M., & Probert, I. (2005). A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation. Micropaleontology, 51, 267–288.CrossRefGoogle Scholar
  363. Zapata, M., Edvardsen, B., Rodríguez, F., Maestro, M. A., & Garrido, J. L. (2001). Chlorophyll c(2) monogalactosyldiacylglyceride ester (chl c(2)-MGDG). A novel marker pigment for Chrysochromulina species (Haptophyta). Marine Ecology Progress Series, 219, 85–98.CrossRefGoogle Scholar
  364. Zapata, M., Jeffrey, S. W., Wright, S. W., Rodriguez, F., Garrido, J. L., & Clementson, L. (2004). Photosynthetic pigments in 37 species (65 strains) of Haptophyta: Implications for oceanography and chemotaxonomy. Marine Ecology-Progress Series, 270, 83–102.CrossRefGoogle Scholar
  365. Zingone, A., Forlani, G., Percopo, I., & Montresor, M. (2011). Morphological characterization of Phaeocystis antarctica (Prymnesiophyceae). Phycologia, 50, 650–660.CrossRefGoogle Scholar
  366. Ziveri, P., de Bernardi, B., Baumann, K.-H., Stoll, H. M., & Mortyn, P. G. (2007). Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 659–675.CrossRefGoogle Scholar
  367. Zondervan, I. (2007). The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores – A review. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 521–537.CrossRefGoogle Scholar
  368. Zondervan, I., Rost, B., & Riebesell, U. (2002). Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. Journal of Experimental Marine Biology and Ecology, 272, 55–70.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wenche Eikrem
    • 1
    • 2
    Email author
  • Linda K. Medlin
    • 3
  • Jorijntje Henderiks
    • 4
  • Sebastian Rokitta
    • 5
  • Björn Rost
    • 5
  • Ian Probert
    • 6
  • Jahn Throndsen
    • 2
  • Bente Edvardsen
    • 2
  1. 1.Marin biogeochemistry and oceanographyNorwegian Institute for Water ResearchOsloNorway
  2. 2.Department of BiosciencesUniversity of OsloOsloNorway
  3. 3.Marine Biological Association of the UKPlymouthUnited Kingdom
  4. 4.Department of Earth SciencesUppsala UniversityUppsalaSweden
  5. 5.Department of Marine BiogeosciencesAlfred-Wegener-Institute –Helmholtz-Centre for Polar and Marine ResearchBremerhavenGermany
  6. 6.Marine Biological Resource CentreUniversité Pierre et Marie Curie, Roscoff Biological StationRoscoffFrance

Personalised recommendations