Abstract
Dinoflagellates are a major group of aquatic protists responsible for a major part of marine primary productivity, the creation of coral reefs, marine bioluminescence, and most toxic red tides; indirectly they also cause some human diseases like paralytic shellfish poisoning, ciguatera, etc. They are derived from photosynthetic ancestors and early in their evolutionary history exchanged most of the histones in their nuclei for DVNPs, proteins of putatively viral origin that caused a complete reorganization of chromosomes that includes the loss of the typical eukaryotic nucleosomes and a very marked increase in total amounts of DNA per nucleus. Later on, they acquired other types of DNA-binding proteins, so-called HLPs in at least two waves, possibly lateral transfers from bacteria. Dinoflagellate mitochondrial genomes are some of the smallest known, and the genomes of the ancestral plastid type of the group, the peridinin plastids, are atomized into mini-circles with usually one single gene per circle. Roughly half of the dinoflagellates are non-photosynthetic, and the majority of the photosynthetic forms have peridinin plastids. Loss of photosynthesis has occurred repeatedly, but all free-living non-photosynthetic forms remain metabolically dependent on cryptic plastids; complete loss of plastid metabolic activity has only been shown in a few parasitic forms. Several lineages show a marked propensity for reacquisition of photosynthesis, be it in the form of permanent photosynthetic endosymbionts, kleptochloroplasts, or serial secondary and tertiary endosymbioses that produce cells with a wide variety of plastid types. In a few members of the group, peridinin plastids have become the pigment cup/retinoid of complex eyelike structures, so-called ocelli.
Similar content being viewed by others
References
Akimoto, H., Wu, C., Kinumi, T., & Ohmiya, Y. (2004). Biological rhythmicity in expressed proteins of the marine dinoflagellate L. polyedrum demonstrated by chronological proteomics. Biochemical and Biophysical Research Communications, 315, 306–312.
Alam, M., Sansing, T. B., Busby, E. L., Martiniz, D. R., & Ray, S. M. (1979). Dinoflagellate sterols I: Sterol composition of the dinoflagellates of Gonyaulax species. Steroids, 33, 197–203.
Anderson, D. M., & Lobel, P. S. (1987). The continuing enigma of ciguatera. Biological Bulletin, 172, 89–107.
Anderson, D. M., & Stolzenbach, K. D. (1985). Selective retention of two dinoflagellates in a well-mixed estuarine embayment: The importance of diel migration and surface avoidance. Marine Ecology Progress Series, 25, 39–50.
Bachvaroff, T. R., & Place, A. R. (2008). From stop to start: Tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate Amphidinium carterae. PloS ONE, 3, e2929.
Bachvaroff, T. R., Concepción, G. T., Rogers, C. R., Herman, E. M., & Delwiche, C. F. (2004). Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. Protist, 155, 65–78.
Bachvaroff, T. R., Gornik, S. G., Concepcion, G. T., Waller, R. F., Mendez, G. S., Lippmeier, J. C., & Delwiche, C. F. (2014). Dinoflagellate phylogeny revisited: Using ribosomal proteins to resolve deep branching dinoflagellate clades. Molecular Phylogenetics and Evolution, 70, 314–322.
Banaszak, A., Iglesias-Prieto, R., & Trench, R. K. (1993). Scrippsiella velellae sp. nov. (Peridiniales) and Gloeodinium viscum sp. nov. (Phytodiniales), dinoflagellate symbionts of two hydrozoans (Cnidaria). Journal of Phycology, 29, 517–528.
Bouck, G. B., & Sweeney, B. M. (1966). The fine structure and ontogeny of trichocysts in marine dinoflagellates. Protoplasma, 61, 205–223.
Brate, J., Krabberød, A. K., Dolven, J. K., Ose, R. F., Kristensen, T., Bjørklund, K. R., & Shalchian-Tabrizi, K. (2012). Radiolaria associated with a large diversity of marine alveolates. Protist, 163, 767–777.
Buskey, E. J., & Swift, E. (1983). Behavioral responses of the coastal copepod Acartia hudsonica (Pinhey) to simulated dinoflagellate bioluminescence. Journal of Experimental Marine Biology and Ecology, 72, 43–58.
Cachon, J., & Cachon, M. (1987). Parasitic dinoflagellates, Chapter 13. In F. J. R. Taylor (Ed.), The biology of dinoflagellates (pp. 571–610). Oxford: Blackwell.
Cavalier-Smith, T. (1991). Cell diversification in heterotrophic flagellates. In D. J. Patterson & J. Larsen (Eds.), The biology of free-living heterotrophic flagellates (The Systematics Association special volume, Vol. 45). Oxford: Clarendon Press.
Cavalier-Smith, T., & Chao, E. E. (2004). Protalveolate phylogeny and systematics and the origins of Sporozoa and dinoflagellates. European Journal of Protistology, 40, 185–212.
Cembella, A. D. (2003). Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia, 42, 420–447.
Coats, D. W., Bachvaroff, T. R., & Delwiche, C. F. (2012). Revision of the family Duboscquellidae with description of Euduboscquella crenulata n. gen., n. sp. (Dinoflagellata, Syndinea), an intracellular parasite of the ciliate Favella panamensis Kofoid & Campbell, 1929. Journal of Eukaryotic Microbiology, 59, 1–11.
Coffroth, M. A., & Santos, S. R. (2005). Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist, 156, 19–34.
Cullen, J. J., & MacIntyre, J. G. (1998). Behavior, physiology and the niche of depth-regulating phytoplankton. In D. M. Anderson, A. D. Cembella, & G. M. Hallegraeff (Eds.), Physiological ecology of harmful algal blooms (pp. 559–580). Berlin: Springer.
Dale, B. (1983). Dinoflagellate resting cysts: “benthic plankton”. In G. A. Fryxell (Ed.), Survival strategies of the algae (pp. 69–136). Cambridge: Cambridge University Press.
Daugbjerg, N., Hansen, G., Larsen, J., & Moestrup, Ø. (2000). Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia, 39, 302–317.
Daugbjerg, N., Hastrup Jensen, M., & Hansen, P. J. (2013). Using nuclear-encoded LSU and SSU rDNA sequences to identify the eukaryotic endosymbiont in Amphisolenia bidentata (Dinophyceae). Protist, 164, 411–422.
De Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., Lara, E., Berney, C., Le Bescot, N., Probert, I., et al. (2015). Eukaryotic plankton diversity in the sunlit ocean. Science, 348(6237), 1261605.
Dodge, J. D. (1965). Chromosome structure in the dinoflagellates and the problem of mesokaryotic cells. Excerpta Medica International Congress Series, 91, 339–345.
Dodge, J. D. (1966). The dinophyceae. In M. B. E. Godward (Ed.), The chromosomes of the algae (pp. 96–115). New York: St. Martin’s Press.
Dodge, J. D. (1973). The fine structure of algal cells. London: Academic.
Dodge, J. D. (1982). Marine dinoflagellates of the British Isles. London: Her Majesty’s Stationary Office.
Dodge, J. D. (1987). Dinoflagellate ultrastructure. In F. J. R. Taylor (Ed.), The biology of dinoflagellates (Botanical monographs, Vol. 21). Oxford: Blackwell.
Dolven, J. K., Lindqvist, C., Albert, V. A., Bjørklund, K. R., Yuasa, T., Takahashi, O. & Mayama, S. (2007). Molecular diversity of alveolates associated with neritic North Atlantic radiolarians. Protist, 158, 65–76.
Evitt, W. R. (1985). Sporopollenin dinoflagellate cysts: Their morphology and interpretation. American Association Stratigraphic Palynologists Monograph Ser. 1.
Fast, N. M., Kissinger, J. C., Roos, D. S., & Keeling, P. J. (2001). Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Molecular Biology and Evolution, 18, 418–426.
Fast, N. M., Xue, L., Bingham, S., & Keeling, P. J. (2002). Re-examining alveolate evolution using multiple protein molecular phylogenies. Journal of Eukaryotic Microbiology, 49, 30–37.
Fensome R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., & Williams, G. L. (1993). A classification of living and fossil dinoflagellates (Micropaleontology special publication, Vol. 7). Hanover: Sheridan Press.
Fensome, R. A., Saldarriaga, J. F., & Taylor, F. J. R. (1999). Dinoflagellate phylogeny revisited: Reconciling morphological and molecular based phylogenies. Grana, 38, 66–80.
Fernández Robledo, J. A., Caler, E., Matsuzaki, M., Keeling, P. J., Shanmugam, D., Roos, D. S., & Vasta, G. R. (2011). The search for the missing link: A relic plastid in Perkinsus? International Journal for Parasitology, 41, 1217–1229.
Fleischer, K., & Case, J. F. (1995). Cephalopod predation facilitated by dinoflagellate luminescence. Biological Bulletin, 189, 263–271.
Flø-Jørgensen, M., Murray, S., & Daugbjerg, N. (2004). Amphidinium revisited. I. Redefinition of Amphidinium (Dinophyceae) based on cladistic and molecular phylogenetic analyses. Journal of Phycology, 40, 351–365.
Gaines, G., & Elbrächter, M. (1987) Heterotrophic nutrition. In F. J. R. Taylor (Ed.), The biology of dinoflagellates (Botanical monographs, Vol. 21). Oxford: Blackwell.
Gaines, G., & Taylor, F. J. R. (1984). Extracellular digestion in marine dinoflagellates. Journal of Plankton Research, 6, 1057–1061.
Gaines, G., & Taylor, F. J. R. (1985). Form and function of the dinoflagellate transverse flagellum. Journal of Protozoology, 32, 290–296.
Gavelis, G. S., Hayakawa, S., White III, R. A., Gojoburi, T., Suttle, C. A., Keeling, P. J., & Leander, B. S. (2015). Eye-like ocelloids are built from different endosymbiotically acquired components. Nature, 523, 204–207.
Gawryluk, R. M. R., del Campo, J., Okamoto, N., Strassert, J. F. H., Lukeš, J., Richards, T. A., Worden, A. Z., Santoro, A. E., & Keeling, P. J. (2016). Morphological identification and single-cell genomics of marine diplonemids. Current Biology, 26, 3053–3059.
Gómez, F. (2003). Checklist of Mediterranean free-living dinoflagellates. Botanica Marina, 46, 215–242.
Gómez, F. (2005). A list of dinoflagellates in the world oceans. Acta Botanica Croatica, 64, 129–212.
Gómez, F. (2012). A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata). Systematics and Biodiversity, 10, 267–275.
Gómez, F., & Furuya, K. (2007). Kofoidinium, Spatulodinium and other kofoidiniaceans (Noctilucales, Dinophyceae) in the Pacific Ocean. European Journal of Protistology, 43, 115–124.
Gornik, S., Ford, K. L., Mulhern, T. D., Bacic, A., McFadden, G. I., & Waller, R. F. (2012). Loss of nucleosomal DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates. Current Biology, 22, 2303–2312.
Gornik, S., Febrimarsa, Cassin, A. M., MacRae, J. I., Ramaprasad, A., Rchiad, Z., McConville, M. J., Bacic, A., McFadden, G. I., Pain, A., & Waller, R. F. (2015). Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proceedings of the National Academy of Sciences of the United States of America, 112, 5767–5772.
Granéli, E., & Turner, J. T. (2006). Ecology of harmful algae (Ecological studies, Vol. 189). Berlin: Springer.
Green, B. R. (2004). The chloroplast genome of dinoflagellates: A reduced instruction set? Protist, 155, 23–31.
Greuet, C. (1978). Ultrastructural organization of the ocelloid of Nematodinium. Phylogenetic aspect of the evolution of Warnowiidae Lindemann dinoflagellates photoreceptor. Cytobiology, 17, 114–136.
Guillard, R. L., & Keller, M. D. (1984). Culturing dinoflagellates. In D. L. Spector (Ed.), Dinoflagellates (pp. 391–442). New York: Academic.
Hackett, J. D., Yoon, H. S., Soares, M. B., Bonaldo, M. F., Casavant, T., Scheetz, T. E., Nosenko, T., & Bhattacharya, D. (2004a). Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Current Biology, 14, 213–218.
Hackett, J. D., Anderson, D. M., Erdner, D. L., & Bhattacharya, D. (2004b). Dinoflagellates: A remarkable evolutionary experiment. American Journal of Botany, 91, 1523–1534.
Hansen, G., & Daugbjerg, N. (2004). Ultrastructure of Gyrodinium spirale, the type species of Gyrodinium (Dinophyceae) including a phylogeny of G. dominans, G. rubrum and G. spirale deduced from partial LSU rDNA sequences. Protist, 155, 271–294.
Hansen, G., Daugbjerg, N., & Henriksen, P. (2007). Baldinia anauniensis gen. et sp. nov.: A ‘new’ dinoflagellate from Lake Tovel, N. Italy. Phycologia, 46, 86–108.
Harada, A., Ohtsuka, S., & Horiguchi, T. (2007). Species of the parasitic genus Duboscquella are members of the enigmatic marine alveolate group 1. Protist, 158, 337–347.
Harper, J. T., & Keeling, P. J. (2003). Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromist and alveolate plastids. Molecular Biology and Evolution, 20, 1730–1735.
Hastings, J. W. (1986). Bioluminescence in bacteria and dinoflagellates. In Govindjee, D. Fork, & J. Amesz (Eds.), Luminescence in plants. New York: Academic.
Hastings, J. W. (1996). Chemistries and colours of bioluminescent reactions: A review. Gene, 173, 5–11.
Hastings, J. W., & Sweeney, B. M. (1964). Phased cell division in the marine dinoflagellates. In E. Zeuthen (Ed.), Synchrony in cell division and growth (pp. 307–321). New York: Interscience.
Head, M. J. (1996). Modern dinoflagellate cysts and their biological affinities. In J. Jansonius & D. C. McGregor (Eds.), Palinology: Principles and applications (Vol. 3, pp. 1197–1248). Dallas: American Association of Stratigraphic Palynologists Foundation.
Hoppenrath, M., & Leander, B. S. (2007). Character evolution in polykrikoid dinoflagellates. Journal of Phycology, 43, 366–377.
Hoppenrath, M., Chomérat, N., Horiguchi, T., Schweikert, M., Nagahama, Y., Murray, S.: Taxonomy and phylogeny of the benthic Prorocentrum species (Dinophyceae) - a proposal and review. Harmful Algae 27, 1–28 (2013) (refered to in page 32).
Hoppenrath, M., Murray, S. A., Chomérat, N., & Horiguchi, T. (2014). Marine benthic dinoflagellates: Unveiling their worldwide biodiversity (Kleine Senckenberg-Reihe, Vol. 54). Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung.
Howe, C. J., Nisbet, R. E. R., & Barbrook, A. C. (2008). The remarkable chloroplast genome of dinoflagellates. Journal of Experimental Botany, 59, 1035–1045.
Ishida, K., & Green, B. R. (2002). Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proceedings of the National Academy of Sciences of the United States of America, 99, 9294–9299.
Jacobson, D. M., & Anderson, D. M. (1992). Ultrastructure of the feeding apparatus and myonemal system of the heterotrophic dinoflagellate Protoperidinium spinulosum. Journal of Phycology, 28, 69–82.
Janouškovec, J., Horák, A., Oborník, M., Lukeš, J., Keeling, P. J., & Doolittle, W. F. (2010). A common red algal origin of the apicomplexan, dinoflagellate and heterokont plastids. Proceedings of the National Academy of Sciences of the United States of America, 107, 10949–10954.
Janouškovec, J., Tikhonenkov, D., Burki, F., Howe, A. T., Kolísko, M., Mylnikov, A. P., & Keeling, P. J. (2015). Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proceedings of the National Academy of Sciences of the United States of America, 112, 10200–10207.
Janouškovec, J., Gavelis, G. G., Burki, F., Dinh, D., Bachvaroff, T. R., Gornik, S. G., Bright, K. J., Imanian, B., Strom, S. L., Delwiche, C. F., Waller, R. F., Fensome, R. A., Leander, B. S., Rohwer, F. L., & Saldarriaga, J. F. (2016). Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proceedings of the National Academy of Sciences of the United States of America, 114, E171–E180. doi:10.1073/pnas.1614842114.
Janson, S. (2004). Molecular evidence that plastids in the toxin-producing dinoflagellate genus Dinophysis originate from the free-living cryptophyte Teleaulax amphioxeia. Environmental Microbiology, 6, 1102–1106.
Jeffrey, S. W., Sielicki, M., & Haxo, F. T. (1975). Chloroplast pigment patterns in dinoflagellates. Journal of Phycology, 11, 374–384.
Johnson, C. H., & Hastings, J. W. (1986). The elusive mechanism of the circadian clock. American Scientist, 74, 29–36.
Johnson, C. H., Inoué, S., Flint, A., & Hastings, J. W. (1985). Compartmentation of algal bioluminescence: Autofluorescence of bioluminescent particles in the dinoflagellate Gonyaulax as studied with image intensified video microscopy and flow cytometry. Journal of Cell Biology, 100, 1435–1446.
Kim, M., Kim, K.-Y., Nam, S.-W., Shin, W., Yih, W., & Park, M.-G. (2014). The effect of starvation on plastid number and photosynthetic performance in the kleptoplastidic dinoflagellate Amylax triacantha. The Journal of Eukaryotic Microbiology, 61, 354–363.
Knaust, R., Urbig, T., Li, L., Taylor, W., & Hastings, J. W. (1998). The circadian rhythm of bioluminescence in Pyrocystis is not due to differences in the amount of luciferase: A comparative study of three bioluminescent marine dinoflagellates. Journal of Phycology, 34, 167–172.
Koike, K., Sekiguchi, H., Kobiyama, A., Takishita, K., Kawachi, M., Koike, K., & Ogata, T. (2005). A novel type of kleptoplastidy in Dinophysis (Dinophyceae): Presence of a haptophyte-type plastid in Dinophysis mitra. Protist, 156, 225–237.
Kretschmann, J., Elbrächter, M., Zinssmeister, C., Soehner, S., Kirsch, M., Kusber, W.-H. & Gottschling, M. (2015). Taxonomic classification of the dinophyte Peridinium acuminatum Ehrenb., = Scrippsiella acuminata, comb. nov. (Thoracosphaeraceae, Peridiniales). Phytotaxa, 220, 239–256.
Laatsch, T., Zauner, S., Stöbe-Meier, B., Kovallik, K. V., & Maier, U. G. (2004). Plastid-derived single gene minicircles of the dinoflagellate Ceratium horridum are localized in the nucleus. Molecular Biology and Evolution, 21, 1318–1322.
Leander, B. S., & Hoppenrath, M. (2008). Ultrastructure of a novel tube-forming intracellular parasite of dinoflagellates: Parvilucifera prorocentri sp. nov. (Alveolata, Myzozoa). European Journal of Protistology, 44, 55–70.
Lehane, L., & Lewis, R. J. (2000). Ciguatera: Recent advances, but the risk remains. International Journal of Food Microbiology, 61, 91–125.
Lessard, E. J., & Swift, E. (1985). Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters measured with a dual-label radioisotope technique. Marine Biology, 87, 289–296.
Lidie, K. B., & Van Dolah, F. M. (2007). Spliced leader RNA-mediated trans-splicing in a dinoflagellate, Karenia brevis. Journal of Eukaryotic Microbiology, 54, 427–435.
Lin, S., Zhang, H., Spencer, D. F., Norman, J. E., & Grey, M. W. (2002). Widespread and extensive editing of mitochondrial mRNAs in dinoflagellates. Journal of Molecular Biology, 320, 727–739.
Livolant, F. (1982a). Dinoflagellate trichocyst ultrastructure I. The shaft. Biology of the Cell, 43, 201–210.
Livolant, F. (1982b). Dinoflagellate trichocyst ultrastructure II. Existence of a sheath. Biology of the Cell, 43, 211–216.
Loeblich, A. R., & Loeblich III, A. R. (1966). Index to the genera, subgenera, and sections of the Pyrrhophyta. Studies of Tropical Oceanography, Miami, 3, 1–94.
Logares, R., Schalchian-Tabrizi, K., Boltovskoy, A., & Rengefors, K. (2007). Extensive dinoflagellate phylogenies indicate infrequent marine-freshwater transitions. Molecular Phylogenetics and Evolution, 45, 887–903.
Lowe, C. D., Day, A., Kemp, S. J., & Montagnes, D. J. S. (2005). There are high levels of functional and genetic diversity in Oxyrrhis marina. Journal of Eukaryotic Microbiology, 52, 250–257.
Lundholm, N., & Moestrup, Ø.. (2006). Biogeography of harmful algae. In E. Granéli & J. T. Turner (Eds.), Ecology of harmful algae (Ecological studies, Vol. 189). Berlin: Springer.
MacRae, R. A., Fensome, R. A., & Williams, G. L. (1996). Fossil dinoflagellate diversity, originations and extinctions and their significance. Canadian Journal of Botany, 74, 1687–1694.
Marshall, A. (1996). Calcification in hermatypic and ahermatypic corals. Science, 271, 1788–1792.
Matsuzaki, M., Kuroiwa, H., Kuroiwa, T., Kita, K., & Nozaki, H. (2008). A cryptic algal group unveiled: A plastid biosynthesis pathway in the oyster parasite Perkinsus marinus. Molecular Biology and Evolution, 25, 1167–1179.
McMinn, A., & Scot, F. J. (2005). Dinoflagellates,Chapter 3. In F. J. Scott & H. W. Marchant (Eds.), Antarctic marine protists (pp. 202–250). Canberra: Australian Biological Resources Study, Australian Antarctic Division.
Mensinger, A. F., & Case, J. F. (1992). Dinoflagellate luminescence increases susceptibility of zooplankton to teleost predation. Marine Biology, 112, 207–210.
Meyers, T. R., Koeneman, T. M., Botelho, C., & Short, S. (1987). Bitter crab disease: A fatal dinoflagellate infection and marketing problem for Alaskan Tanner crabs Chionoecetes bairdi. Diseases of Aquatic Organisms, 3, 195–216.
Minge, M. A., Shalchian-Tabrizi, K., Tørresen, O. K., Takishita, K., Probert, I., Inagaki, Y., Klaveness, D., & Jakobsen, K. S. (2010). A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum. BMC Evolutionary Biology, 10, 191.
Moestrup, Ø., Hansen, G., & Daugbjerg, N. (2008). Studies on woloszynskioid dinoflagellates. III: On the ultrastructure and phylogeny of Borghiella dodgei gen. et sp. nov., a cold-water species from Lake Tovel, N. Italy, and on B. tenuissima comb. nov. (syn. Woloszynskia tenuissima). Phycologia, 47, 54–78.
Moldowan, J. M., & Talyzina, N. M. (1998). Biogeochemical evidence for dinoflagellate ancestors in the early Cambrian. Science, 281, 1168–1170.
Moon, E., Nam, S. W., Shin, W., Park, M. G., & Coats, D. W. (2015). Do all dinoflagellates have an extranuclear spindle? Protist, 166, 569–584.
Moore, R. B., Oborník, M., Januškovec, J., Chrudimský, T., Vancová, M., Green, D. H., Wright, S. W., Davies, N. W., Bolch, C. J. S., Heimann, K., Šlapeta, J., Hoegh-Guldberg, O., Logsdon Jr., J. M., & Carter, D. A. (2008). A photosynthetic alveolate closely related to apicomplexan parasites. Nature, 451, 959–963.
Moreira, D., & López-García, P. (2002). The molecular ecology of microbial eukaryotes unveils a hidden world. Trends in Microbiology, 10, 31–38.
Morrill, L. C., & Loeblich III, A. R. (1983). Ultrastructure of the dinoflagellate amphiesma. International Review of Cytology, 82, 151–181.
Morse, D., Salois, P., Markovic, P., & Hastings, J. W. (1995). A nuclear-encoded form II rubisco in dinoflagellates. Science, 268, 1622–1624.
Netzel, H., & Dürr, G. (1984). Dinoflagellate cell cortex, Chapter 3. In D. L. Spector (Ed.), Dinoflagellates. New York: Academic.
Nicolas, M. T., Johnson, C. H., Bassot, J. M., & Hastings, J. W. (1985). Immunogold labeling of organelles in the bioluminescent dinoflagellate Gonyaulax polyedra with anti- luciferase antibody. Cell Biology International Reports, 9, 797–802.
Nisbet, R. E. R., Koumadou, V. L., Barbrook, A. C., & Howe, C. J. (2004). Novel plastid gene minicircles in the dinoflagellate Amphidinium operculatum. Gene, 331, 141–147.
Nishitani, G., Nagai, S., Hayakawa, S., Kosaka, Y., Sakurada, K., Kamiyama, T., & Gojobori, T. (2012). Multiple plastids collected by the dinoflagellate Dinophysis mitra through kleptoplastidy. Applied and Environmental Microbiology, 78, 813–821.
Nosenko, T., Lidie, K. L., Van Dolah, F. M., Lindquist, E., & Cheng, J. F. (2006). U.S. Department of Energy-Joint Genome Institute, Bhattacharya, D.: Chimeric plastid proteome in the Florida red tide dinoflagellate Karenia brevis. Molecular Biology and Evolution, 23, 2026–2038.
Oakley, B., & Dodge, J. D. (1974). Kinetochores associated with the nuclear envelope in the mitosis of a dinoflagellate. Journal of Cell Biology, 63, 322–325.
Okamoto, N., Horák, A., & Keeling, P. (2012). Description of two species of early-branching dinoflagellates, Psammosa pacifica n. g., n. sp., and Psammosa atlantica n. sp. PLOS One, 7. doi:10.1371/journal.pone.0034900.
Onuma, R., & Horiguchi, T. (2015). Kleptochloroplast enlargement, karyoklepty and the distribution of the cryptomonad nucleus in Nusuttodinium aeruginosum (Dinophyceae). Protist, 166, 177–195.
Orr, R. J. S., Murray, S. A., Stüken, A., Rhodes, L., & Jakobsen, K. S. (2012). When naked became armored: An eight-gene phylogeny reveals monophyletic origin of theca in dinoflagellates. PLOS One. doi:10.1371/journal.pone.0050004.
Patron, N. J., Waller, R. F., & Keeling, P. J. (2006). A tertiary plastid uses genes from two endosymbionts. Journal of Molecular Biology, 357, 1373–1382.
Pfiester, L. A., & Anderson, D. M. (1987). Dinoflagellate life-cycles and their environmental control, Chapter 14. In F. J. R. Taylor (Ed.), The biology of dinoflagellates. Oxford: Blackwell.
Pollingher, U. (1987). Freshwater ecosystems, Chapter 11. In F. J. R. Taylor (Ed.), The biology of dinoflagellates. Oxford: Blackwell.
Poupin, J., Cussatlegras, A.-S., & Geistdoerfer, P. (1999). Plancton marin bioluminescent. Brest: Rapport scientifique du Laboratoire d’Océanographie de l’École Navale LOEN, 83 pp.
Pross, J., Kotthof, U., & Zonnefeld, K. (2004). Organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Meso- and Cenozoic. Palaeontologische Zeitschrift, 78, 5–39.
Rae, P. M. M. (1976). Hydroxymethiluracil in eukaryote DNA: A natural feature of the pyrrophyta (dinoflagellates). Science, 194, 1062–1064.
Raikov, I. B. (1994). The diversity of forms of mitosis in protozoa: A comparative review. European Journal of Protistology, 30, 253–269.
Ris, H., & Kubai, D. F. (1974). An unusual mitotic mechanism in the parasitic protozoan Syndinium sp. Journal of Cell Biology, 60, 702–720.
Rizzo, P. J. (1991). The enigma of the dinoflagellate chromosome. Journal of Protozoology, 38, 246–252.
Sako, Y., Yoshida, T., Uchida, A., Arakawa, O., Noguchi, T., & Ishida, Y. (2001). Purification and characterization of a sulfotransferase specific to N-21 of saxitoxin and gonyautoxin 2 + 3 from the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). Journal of Phycology, 37, 1044–1051.
Saldarriaga, J. F., Taylor, F. J. R., Cavalier-Smith, T., Menden-Deuer, S., & Keeling, P. J. (2004). Molecular data and the evolutionary history of dinoflagellates. European Journal of Protistology, 40, 85–111.
Sánchez-Puerta, M. V., Lippmeier, J. C., Apt, K. E., & Delwiche, C. F. (2007). Plastid genes in a non-photosynthetic dinoflagellate. Protist, 158, 105–117.
Sarjeant, W. A. S. (1974). Fossil and living dinoflagellates. London: Academic.
Schiller, J. (1933, 1937). In Rabenhorst’s Kryptogamen Flora, 10(3) Teil. 1,2.
Schnepf, E., & Elbrächter, M. (1992). Nutritional strategies in dinoflagellates: A review with emphasis on cell biological aspects. European Journal of Protistology, 28, 3–24.
Schnepf, E., & Elbrächter, M. (1999). Dinophyte chloroplasts and phylogeny-a review. Grana, 38, 81–97.
Schweikert, M., & Elbrächter, M. (2004). First ultrastructural investigations of the consortium between a phototrophic eukaryotic endosymbiont and Podolampas bipes (Dinophyceae). Phycologia, 43, 614–623.
Sellers, C.G., Gast, R. J. & Sanders, R. W. (2014). Selective feeding and foreign plastid retention in an Antarctic dinoflagellate. Journal of Phycology, 50, 1081–1088.
Silberman, J. D., Collins, A. G., Gershwin, L. A., Johnson, P. J., & Roger, A. J. (2004). Ellobiopsids of the genus Thalassomyces are alveolates. Journal of Eukaryotic Microbiology, 51, 246–252.
Skovgaard, A., Meneses, I., & Angélico, M. M. (2009). Identifying the lethal fish egg parasite Ichthyodinium chabelardi as a member of Marine Alveolate Group I. Environmental Microbiology, 11, 2030–2041.
Slamovits, C. H., & Keeling, P. J. (2008). Plastid-derived genes in the non-photosynthetic alveolate Oxyrrhis marina. Molecular Biology and Evolution, 25, 1297–1306.
Smayda, T. J. (1997). What is a bloom? A commentary. Limnology and Oceanography, 42, 1132–1136.
Smayda, T. J., & Reynolds, C. S. (2003). Strategies of marine dinoflagellate survival and some rules of assembly. Journal of Sea Research, 49, 95–106.
Sournia, A. (1973). Catalogue des espèces et taxons infraspécifiques de Dinoflagellés marins actuels. Beihefte zur Nova Hedwigia, 48, 1–92.
Sparmann, S. F., Leander, B. S., & Hoppenrath, M. (2008). Comparative morphology and molecular phylogeny of Apicoporus n. gen.: A new genus of marine benthic dinoflagellates formerly classified within Amphidinium. Protist, 159, 383–399.
Spector, D. L. (Ed.). (1984). Dinoflagellates. New York: Academic.
Spector, D. L., Vasconcelos, A. C., & Triemer, R. E. (1981). DNA duplication and chromosome structure in the dinoflagellates. Protoplasma, 105, 185–194.
Steidinger, K. A., & Williams, J. (1970). Memoirs of the Hourglass cruises (Vol. II). St. Petersburg: Marine Research Laboratory.
Stelter, K., El-Sayed, N. M., & Seeber, F. (2007). The expression of a plant-type ferredoxin redox system provides molecular evidence for a plastid in the early dinoflagellate Perkinsus marinus. Protist, 158, 119–130.
Stentiford, G. D., & Shields, J. D. (2005). A review of the parasitic dinoflagellates Hematodinium species and Hematodinium-like infections in marine crustaceans. Diseases of Aquatic Organisms, 66, 47–70.
Sweeney, B. M. (1987). Bioluminescence and circadian rhythms. In F. J. R. Taylor (Ed.), The biology of dinoflagellates (Botanical monographs). Oxford: Blackwell.
Takano, Y., Hansen, G., Fujita, D., & Horiguchi, T. (2008). Serial replacement of diatom endosymbionts in two freshwater dinoflagellates, Peridiniopsis spp. (Peridiniales, Dinophyceae). Phycologia, 47, 41–53.
Takishita, K., Tsuchiya, M., Kawato, M., Ogun, K., Kitazato, H. & Maruyama, T. (2007). Genetic diversity of microbial eukaryotes in anoxic sediment of the saline meromictic lake Namako-ike (Japan): on the detection of anaerobic or anoxic-tolerant lineages of eukaryotes. Protist, 158, 51–64.
Taylor, F. J. R. (1976). Dinoflagellates from the International Indian Ocean Expedition. Biblioteca Botanica, 132, 1–234. pls. 1–46.
Taylor, F. J. R. (1980). On dinoflagellate evolution. Biosystems, 13, 65–108.
Taylor, F. J. R. (1987). The biology of dinoflagellates (Botanical monographs). Oxford: Blackwell.
Taylor, F. J. R. (2004). Illumination or confusion? Dinoflagellate molecular phylogenetic data viewed from a primarily morphological standpoint. Phycological Research, 52, 308–324.
Taylor, F. J. R., Hoppenrath, M., & Saldarriaga, J. F. (2008). Dinoflagellate diversity and distribution. Biodiversity and Conservation, 17, 407–418. Themed issue: Protist diversity and geographical distribution.
Terao, K., Ito, E., Kakinuma, Y., Igarashi, K., Kobayashi, M., Ohizumi, Y., & Yasumoto, T. (1989). Histopathological studies on experimental marine toxin poisoning. IV: Pathogenesis of experimental maitotoxin poisoning. Toxicon, 27, 979–988.
Trench, R. K. (1997). Diversity of symbiotic dinoflagellates and the evolution of microalgal-invertebrate symbioses. In H. A. Lessios & I. G. MacIntyre (Eds.), Proceedings of the eighth international coral reef symposium 2 (pp. 1275–1286). Balboa: Smithsonian Tropical Research Institute.
Triemer, R. E. (1982). A unique mitotic variation in the marine dinoflagellate Oxyrrhis marina (Pyrrophyta). Journal of Phycology, 18, 399–411.
Van Dolah, F. M. (2000). Marine algal toxins: Origins, health effects and their increased occurrence. Environmental Health Perspectives, 108(Suppl 1), 133–141.
Velo-Suárez, L., Brosnahan, M. L., Anderson, D. M., & McGillicuddy Jr., D. J. (2013). A quantitative assessment of the role of the parasite Amoebophrya in the termination of Alexandrium fundyense blooms within a small coastal embayment. PLoS One. doi:10.1371/journal.pone.0081150.
von Stosch, H. A. (1964). Zum Problem der sexuellen Fortplanzung in der Peridineengattung Ceratium. Helgoländer Wissenschaftliche Meeresuntersuchungen, 10, 140–153.
Waller, R. F., & Jackson, C. J. (2009). Dinoflagellate mitochondrial genomes: Stretching the rules of molecular biology. BioEssays, 31, 237–245.
Watanabe, M. M., Sasa, T., Suda, S., Inouye, I., & Takishi, S. (1991). Major carotenoid composition of an endosymbiont in a green dinoflagellate, Lepidodinium viride. Journal of Phycology, 27(Suppl), 75.
Westfall, J. A., Bradbury, P. C., & Townsend, J. W. (1983). Ultrastructure of the dinoflagellate Polykrikos. Journal of Cell Science, 63, 245–261.
Whitney, S. M., Shaw, D. C., & Yellowlees, D. (1995). Evidence that some dinoflagellates contain a ribulose-1,5-biphosphate carboxylase/oxygenase related to that of the alpha-proteobacteria. Proceedings of the Royal Society of London Series B, 259, 271–275.
Wisecaver, J. H., & Hackett, J. D. (2010). Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata. BMC Genomics, 11, 366.
Wong, J. T. Y., New, D. C., Wong, J. C. W., & Hung, V. K. L. (2003). Histone-like proteins of the dinoflagellate Crypthecodinium cohnii have homologies to bacterial DNA-binding proteins. Eukaryotic Cell, 2, 646–650.
Zhang, H., & Lin, S. (2005). Mitochondrial cytochrome b mRNA editing in dinoflagellates: Possible ecological and evolutionary associations? Journal of Eukaryotic Microbiology, 52, 538–545.
Zhang, Z., Green, B. R., & Cavalier-Smith, T. (1999). Single gene circles in dinoflagellate plastid genomes. Nature, 400, 155–159.
Zhang, H., Bhattacharya, D., & Lin, S. (2005). Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. Journal of Phycology, 41, 411–420.
Zhang, H., Hou, Y., Miranda, L., Campbell, D. A., Sturm, N. R., Gaasterland, T., & Lin, S. (2007). Spliced leader RNA trans-splicing in dinoflagellates. Proceedings of the National Academy of Sciences of the United States of America, 104, 4618–4623.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this entry
Cite this entry
Saldarriaga, J.F., Taylor, F.J.R. (2017). Dinoflagellata. In: Archibald, J., et al. Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_22-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-32669-6_22-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32669-6
Online ISBN: 978-3-319-32669-6
eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences