Advertisement

Biometrology Guidelines for the In Vivo Assessment of Transepidermal Water Loss and Skin Hydration in Nonclinical Settings

  • Johan L. Du PlessisEmail author
  • Aleksandr B. Stefaniak
Reference work entry

Abstract

It is becoming evident that assessment of skin exposure to physical and chemical stressors in workplaces should be accompanied by the assessment of skin barrier function at the time of exposure. “Real-life” occupational (nonclinical) environments can be highly variable and difficult to control which presents unique measurement challenges not encountered in clinical settings. Based on existing clinical guidelines, published data, and our own experiences, we developed guidelines and best practices for the in vivo measurement of transepidermal water loss (TEWL) and skin hydration in nonclinical settings, with specific emphasis placed on occupational environments (workplaces) as a worst-case scenario. This chapter presents these guidelines as well as amendments since initial publication thereof. Key elements of these guidelines are (i) recognition and minimization, to the extent feasible, of the influences of relevant endogenous-, exogenous-, environmental-, and measurement/instrumentation-related factors; (ii) recommendation of instruments to be used for measurement of in particular TEWL; (iii) recommendation of standardized reporting of measurement results; and (iv) accurate disclosure of notable deviations from the guidelines. It is envisaged that these guidelines will promote skin barrier assessment, particularly in occupational environments, and consequentially enable intercomparison of future study results.

Keywords

Occupation Skin hydration Transepidermal water loss Skin barrier Guideline Nonclinical Measurement 

Abbreviations

RH

Relative humidity

SC

Stratum corneum

TEWL

Transepidermal water loss

Notes

Acknowledgments

Mention of a specific product or company does not constitute endorsement by the Centers for Disease Control and Prevention. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of NIOSH.

References

  1. Agache P. Stratum corneum histophysiology. In: Agache P, Humbert P, editors. Measuring the skin. Germany: Springer; 2004. p. 95–100.CrossRefGoogle Scholar
  2. Barel AO, Clarys P. Measurement of epidermal capacitance. In: Serup J, Jemec GBE, Grove GL, editors. Handbook of non-invasive methods and the skin. 2nd ed. Boca Raton: CRC Press; 2006. p. 337–44.Google Scholar
  3. Barel AO, Clarys P. Skin capacitance. In: Berardesca E et al., editors. Non invasive diagnostic techniques in clinical dermatology. Berlin: Springer; 2014. p. 357–65.CrossRefGoogle Scholar
  4. Bauer A, Kelterer D, Bartsch R, Stadeler M, Elsner P. Skin protection in the food industry. Curr Probl Dermatol. 2007;34:138–50.CrossRefPubMedGoogle Scholar
  5. Berardesca E. EEMCO guidance for the assessment of stratum corneum hydration: electrical methods. Skin Res Technol. 1997;3:126–32.CrossRefPubMedGoogle Scholar
  6. Berndt U, Hinnen U, Iliev D, Elsner P. Is occupational irritant contact dermatitis predictable by cutaneous bioengineering methods? Results of the Swiss metalworkers’ eczema study (PROMETES). Dermatology. 1999;198:351–4.CrossRefPubMedGoogle Scholar
  7. Brandner JM, Behne MJ, Huesing B, Moll I. Caffeine improves barrier function in male skin. Int J Cosmet Sci. 2006;28:343–7.CrossRefPubMedGoogle Scholar
  8. C&K. Derma unit SSC3 information and operation instructions. Germany: CK Electronic GmbH; 2004.Google Scholar
  9. Chou T-C, Shih T-S, Tsai J-C, Wu J-D, Sheu H-M, Chang H-Y. Effect of occupational exposure to rayon manufacturing chemicals on skin barrier to evaporative water loss. J Occup Health. 2004;46:410–7.CrossRefPubMedGoogle Scholar
  10. Chou T-C, Lin K-H, Wang S-M, Lee C-W, Su S-B, Shih T-S, Chang H-Y. Transepidermal water loss and skin capacitance alterations among workers in an ultra-low humidity environment. Arch Dermatol Res. 2005;196:489–95.CrossRefGoogle Scholar
  11. Chou T-C, Wang PC, Wu JD, Sheu SC, Wu TN, Chang HY, Shih TS. Skin barrier alteration associated with chromium exposure and smoking amongst cement workers. Epidemiology. 2008;19:S142–3.Google Scholar
  12. Coenraads P-J, Lee J, Pinnagoda J. Changes in water vapor loss from the skin of metal industry workers monitored during exposure to oils. Scand J Work Environ Health. 1986;12:494–8.CrossRefPubMedGoogle Scholar
  13. Cohen JC, Hartman DG, Garofalo MJ, Basehoar A, Raynor B, Ashbrenner E, Akin FJ. Comparison of closed chamber and open chamber evaporimetry. Skin Res Technol. 2009;15:51–4.CrossRefPubMedGoogle Scholar
  14. Crowther JM, Sieg A, Blenkiron P, Marcott C, Matts PJ, Kaczvinsky JR, Rawlings AV. Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo. Br J Dermatol. 2008;159:567–77.PubMedGoogle Scholar
  15. Darlenski R, Sassning S, Tsankov N, Fluhr JW. Non-invasive in vivo methods for investigation of the skin barrier. Eur J Pham Biopharm. 2009;72:295–303.CrossRefGoogle Scholar
  16. De Paepe K, Houben E, Adam R, Wiesemann F, Rogiers V. Validation of the VapoMeter, a closed unventilated chamber system to assess transepidermal water loss vs. the open chamber Tewameter®. Skin Res Technol. 2005;11:61–9.CrossRefPubMedGoogle Scholar
  17. Du Plessis JL, Eloff FC, Badenhorst CJ, Olivier J, Laubsher PJ, van Aarde MN, Franken A. Assessment of dermal exposure and skin condition of workers exposed to nickel at a South African base metal refinery. Ann Occup Hyg. 2010;54:23–30.PubMedGoogle Scholar
  18. Du Plessis JL, Eloff FC, Engelbrecht S, Laubsher PJ, van Aarde MN, Franken A. Dermal exposure and changes in skin barrier function of base metal refinery workers co-exposed to cobalt and nickel. Occup Health South Afr. 2013a;19:6–12.Google Scholar
  19. Du Plessis J, Stefaniak AB, Eloff FC, John SM, Agner T, Chou TC, Nixon R, Steiner MFC, Franken A, Kudla I, Holness DL. Guidelines for the in vivo assessment of skin properties in workplace settings: part 2. Transepidermal water loss and skin hydration. Skin Res Technol. 2013b;19:265–78.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fluhr JW, Darlenski R. Transepidermal water loss (TEWL). In: Berardesca E et al., editors. Non invasive diagnostic techniques in clinical dermatology. Berlin: Springer; 2014. p. 353–6.CrossRefGoogle Scholar
  21. Fluhr JW, Darlenski R, Angelova-Fisher I, Tsankov N, Basketter D. Skin irritation and sensitisation: mechanisms and new approaches for risk assessment. Skin Pharmacol Physiol. 2008;21:124–35.CrossRefPubMedGoogle Scholar
  22. Gabard B, Treffel P. Transepidermal water loss. In: Agache P, Humbert P, editors. Measuring the skin. Germany: Springer; 2004. p. 553–64.CrossRefGoogle Scholar
  23. Goh CL, Gan SL. Efficacies of a barrier cream and an afterwork emollient cream against cutting fluid dermatitis in metalworkers: a prospective study. Contact Dermatitis. 1994;31:176–80.CrossRefPubMedGoogle Scholar
  24. Hachem JP, De Paepe K, Sterckx G, Kaufman L, Rogiers V, Roseeu D. Evaluation of biophysical and clinical parameters of skin barrier function among hospital workers. Contact Dermatitis. 2002;46:220–3.CrossRefPubMedGoogle Scholar
  25. Heinrich U, Koop U, Leneveu-Duchemin MC, Osterrieder S, Bielfeldt C. Multicentre comparison of skin hydration in terms of physical-, physiological- and product-dependent parameters by the capacitative method (Corneometer CM 825). Int J Cosmet Sci. 2003;25:45–53.CrossRefPubMedGoogle Scholar
  26. Imhof RE, De Jesus ME, Xiao P, Ciortea LI, Berg EP. Closed-chamber transepidermal water loss measurement: microclimate, calibration and performance. Int J Cosmet Sci. 2009;31:97–118.CrossRefPubMedGoogle Scholar
  27. Imhof B, Xiao P, Angelova-Fischer I. TEWL, closed chamber methods: aquaflux and vapometer. In: Berardesca E et al., editors. Non invasive diagnostic techniques in clinical dermatology. Berlin: Springer; 2014. p. 345–52.CrossRefGoogle Scholar
  28. John SM. Primary and acquired sensitive skin. In: Berardesca E, Fluhr J, Maibach HI, editors. The sensitive skin syndrome. New York: Taylor & Francis; 2006. p. 129–47.Google Scholar
  29. John SM, Uter W, Schwanitz HJ. Relevance of multi-parametric skin bioengineering in a prospectively-followed cohort of junior hairdressers. Contact Dermatitis. 2000;43:161–168.CrossRefPubMedGoogle Scholar
  30. Kezic S, Nielsen JB. Absorption of chemicals through compromised skin. Int Arch Occup Environ Health. 2009;82:677–88.CrossRefPubMedGoogle Scholar
  31. Korting HC, Hübner K, Greiner K, Hamm G, Braun-Falco O. Differences in the skin surface pH and bacterial microflora due to long-term application of synthetic detergent preparations of pH 5.5 and pH 7.0. Results of a cross-over trial in healthy volunteers. Acta Derm Venereol. 1990;70:429–31.PubMedGoogle Scholar
  32. Kottner J, Ludriksone L, Bartels NG, Blume-Peytavi U. Do repeated skin barrier measurements influence each other’s results? An explorative study. Skin Pharmacol Physiol. 2014;27:90–6.CrossRefPubMedGoogle Scholar
  33. Kütting B, Uter W, Baumeister T, Schaller B, Weistenhöffer W, Drexler H. Non-invasive bioengineering methods in an intervention study in 1020 male metal workers: results and implications for occupational dermatology. Contact Dermatitis. 2010;62:272–8.CrossRefPubMedGoogle Scholar
  34. Levin J, Maibach H. The correlation between transepidermal water loss and percutaneous absorption: an overview. J Control Release. 2005;103:291–9.CrossRefPubMedGoogle Scholar
  35. Nielsen JB. Percutaneous penetration through slightly damaged skin. Arch Dermatol Res. 2005;296:560–7.CrossRefPubMedGoogle Scholar
  36. Nuutinen J. Mesurement of transepidermal water loss by closed-chamber systems. In: Serup J, Jemec GBE, Grove GL, editors. Handbook of non-invasive methods and the skin. 2nd ed. Boca Raton: CRC Press; 2006. p. 411–20.Google Scholar
  37. Ohman H, Vahlquist A. The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis. A clue to the molecular origin of the “acid skin mantle”? J Invest Dermatol. 1998;111:674–7.CrossRefPubMedGoogle Scholar
  38. Packham CL, Packham HE, Packham HM, Cherrington A. Investigation into different skin conditions in certain occupations. J R Soc Prom Health. 2005;125:181–5.CrossRefGoogle Scholar
  39. Pinnagoda J, Tupker RA, Agner T, Serup J. Guidelines for transepidermal water loss (TEWL) measurement. Contact Dermatitis. 1990;22:164–78.CrossRefPubMedGoogle Scholar
  40. Pirot F, Falson F. Skin barrier function. In: Agache P, Humbert P, editors. Measuring the skin. Germany: Springer; 2004. p. 513–24.CrossRefGoogle Scholar
  41. Proksch E, Brandner JM, Jensen J-M. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72.CrossRefPubMedGoogle Scholar
  42. Rawlings AV. Ethnic skin types: are there differences in skin structure and function? Int J Cosmet Sci. 2006;28:79–93.CrossRefPubMedGoogle Scholar
  43. Raynor B, Ashbrenner E, Garofalo M, Cohen J, Akin F. The practical dynamics of transepidermal water loss (TEWL): pharmacokinetic modeling and the limitations of closed-chamber evaporimetry. Skin Res Tech. 2004;10:3. Abstract.Google Scholar
  44. Rogiers V. EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Appl Skin Physiol. 2001;14:117–28.CrossRefPubMedGoogle Scholar
  45. Roskos KV, Guy RH. Assessment of skin barrier function using transepidermal water loss: effect of age. Pharmacol Res. 1989;6:949–53.CrossRefGoogle Scholar
  46. Smit HA, van Rijssen A, Vandenbroucke JP, Coenraads PJ. Susceptibility to and incidence of hand dermatitis in a cohort of apprentice hairdressers and nurses. Scand J Work Environ Health. 1994;20:113–21.CrossRefPubMedGoogle Scholar
  47. Stefaniak AB, Du Plessis JL, John SM, Eloff FC, Agner T, Chou TC, Nixon R, Steiner MFC, Kudla I, Holness DL. Guidelines for the in vivo assessment of skin properties in workplace settings: part 1. pH. Skin Res Technol. 2013;19:59–68.CrossRefPubMedGoogle Scholar
  48. Steiner M, Dick FD, Ormerod A, Semple SE, Murphy E, Ayres JG. Teledermatology in occupational skin health surveillance – diagnostic accuracy and reliability. Dermatitis. 2011;22:295.Google Scholar
  49. Tupker RA, Pinnagoda J. Measurement of transepidermal water loss by semi open systems. In: Serup J, Jemec GBE, Grove GL, editors. Handbook of non-invasive methods and the skin. 2nd ed. Boca Raton: CRC Press; 2006. p. 383–92.Google Scholar
  50. Voegeli D. The effect of washing and drying practices on skin barrier function. J Wound Ostomy Continence Nurs. 2008;35:84–90.CrossRefPubMedGoogle Scholar
  51. Wilhelm KP, Cua AB, Maibach HI. Skin aging. Effect on transpeidermal water loss, stratum corneum hydration, skin surface pH, and casual sebum content. Arch Dermatol. 1991;127:1806–9.CrossRefPubMedGoogle Scholar
  52. Zhai H, Maibach HI. Occlusion vs. skin barrier function. Skin Res Technol. 2002;8:1–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Johan L. Du Plessis
    • 1
    Email author
  • Aleksandr B. Stefaniak
    • 2
  1. 1.Occupational Hygiene and Health Research InitiativeNorth-West UniversityPotchefstroomSouth Africa
  2. 2.Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownUSA

Personalised recommendations