Skip to main content

Gene Expression and Genetic Evaluation of the Skin

  • Reference work entry
  • First Online:
Agache's Measuring the Skin
  • 193 Accesses

Abstract

In this chapter, our purpose is to provide some clues on what can or cannot be expected from gene expression and genetic testing to investigate skin physiopathology using DNA microarrays. The use of these technologies has dramatically increased during the past years, and several studies have been performed for various dermatological diseases, such as malignant melanoma, psoriasis, and lupus erythematosus (reviewed in Kunz et al. (Exp Dermatol 13(10):593–606, 2004)). Identification of key target genes and pathways involved in such diseases provides enormous perspectives for dermatologists. The first section of this chapter will describe the main features of the available DNA microarray technologies and methodologies to be mastered in order to get meaningful data. In the second section, we choose to show how gene expression profiling can contribute to increase our basic knowledge on psoriasis as a case study as well as to identify diagnostic/prognostic markers. In the last section, the impact of combined discoveries issued from the analyses of gene expression and genetic testing based on single nucleotide polymorphism (SNP) in dermatology will be discussed. We hope that the present chapter will provide the basic understanding of these technologies to dermatologists, helping them to deal with the complexity of what is called functional genomics.

If our brains were simple enough for us to understand them, we’d be so simple that we couldn’t. (Ian Stewart, The Collapse of Chaos: Discovering Simplicity in a Complex World)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ainali C, Valeyev N, Perera G, Williams A, Gudjonson JE, Ouzounis CA, Nestle FO, Tsoka S. Transcriptomic classification reveals molecular subtypes in psoriasis. BMC Genomics. 2012;13:472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al Robaee AA. Molecular genetics of psoriasis (principles, technology, gene location, genetic polymorphism and gene expression). Int J Health Sci (Qassim). 2010;4(2):103–27.

    Google Scholar 

  • Barrey E, Mucher E, Jeansoule N, Larcher T, Larcher T, Guigand L, Herszberg B, Chaffaux S, Guerin G, Mata X, Benech P, Canale M, Alibert O, Maltere P, Gidrol X, Barrey E, Mucher E, Jeansoule N, Larcher T. Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions. BMC Vet Res. 2009;5(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrey E, Jayr VL, Mucher E, Gospodnetic S, Joly F, Benech P, Alibert O, Gidrol X, Mata X, Vaiman A, Guerin G. Transcriptomic analysis of muscle in horses suffering from recurrent exertional rhabdomyolysis revealed energetic pathway alterations and disruption in the cytosolic calcium regulation. Anim Genet. 2012;43(3):271–81.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Bassat H, Klein BY. Inhibitors of tyrosine kinases in the treatment of psoriasis. Curr Pharm Des. 2000;6(9):933–42.

    Article  CAS  PubMed  Google Scholar 

  • Benech P, Mas-Chamberlin C, Mondon P, Lintner K. PredictSearch: understanding biological activity of cosmetic ingredients. Personal Care Asia September. 2007:61(8):61–65.

    Google Scholar 

  • Bièche I, Onody P, Tozlu S, Driouch K, Vidaud M, Lidereau R. Prognostic value of ERBB family mRNA expression in breast carcinomas. Int J Cancer. 2003;106(5):758–65.

    Article  PubMed  Google Scholar 

  • Bowcock AM, Shannon W, Du F, Duncan J, Cao K, Aftergut K, Catier J, Fernandez-Vina MA, Menter A. Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum Mol Genet. 2001; 10:1793–1805.

    Article  CAS  PubMed  Google Scholar 

  • Fang S, Fang X, Xiong M. Psoriasis prediction from genome-wide SNP profiles. BMC Dermatol. 2011;11:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286:531–7.

    Article  CAS  PubMed  Google Scholar 

  • Gudjonsson JE, Johnston A, Stoll SW, Riblett MB, Xing X, Kochkodan JJ, Ding J, Nair RP, Aphale A, Voorhees JJ, Elder JT. Evidence for altered Wnt signaling in psoriatic skin. J Invest Dermatol. 2010;130(7):1849–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagforsen E, Sunnerberg K, Michaëlsson G, Kämpe O, Hedstrand H. Psoriasis autoantigens in normal scalp skin – identification by expression cloning. J Invest Dermatol. 2007;127(9):2276–80.

    Article  CAS  PubMed  Google Scholar 

  • Hand D, Mannila H, Smyth P. Principles of data-mining. Cambridge, MA: The MIT Press; 2001.

    Google Scholar 

  • Hayward P, Kalmar T, Arias AM. Wnt/Notch signalling and information processing during development. Development. 2008;135(3):411–24.

    Article  CAS  PubMed  Google Scholar 

  • Hedegaard J, Arce C, Bicciato S, Bonnet A, Buitenhuis B, Collado-Romero M, Conley LN, Sancristobal M, Ferrari F, Garrido JJ, Groenen MA, Hornshøj H, Hulsegge I, Jiang L, Jiménez-Marín A, Kommadath A, Lagarrigue S, Leunissen JA, Liaubet L, Neerincx PB, Nie H, van der Poel J, Prickett D, Ramirez-Boo M, Rebel JM, Robert-Granié C, Skarman A, Smits MA, Sørensen P, Tosser-Klopp G, Watson M. Methods for interpreting lists of affected genes obtained in a DNA microarray experiment. BMC Proc. 2009;3 Suppl 4:S5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu T, Li C. Convergence between Wnt-β-catenin and EGFR signaling in cancer. Mol Cancer. 2010;9:236.

    Article  PubMed  PubMed Central  Google Scholar 

  • International HapMap Consortium. The International HapMap Project. Nature. 2003;426:789–96.

    Article  Google Scholar 

  • Jeffery IB, Higgins DG, Culhane AC. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics. 2006;7:359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston A, Xing X, Swindell WR, Kochkodan J, Riblett M, Nair RP, Stuart PE, Ding J, Voorhees JJ, Elder JT, Gudjonsson JE. Susceptibility-associated genetic variation at IL12B enhances Th1 polarization in psoriasis. Hum Mol Genet. 2013;22(9):1807–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jullien D, Barker JN. Genetics of psoriasis. J Eur Acad Dermatol Venereol. 2006;20 Suppl 2:42–51.

    Article  Google Scholar 

  • Kelder T, Conklin BR, Evelo CT, Pico AR. Finding the right questions: exploratory pathway analysis to enhance biological discovery in large datasets. PLoS Biol. 2010;31:8(8).

    Google Scholar 

  • Kunz M, Dannemann M, Kelso J. High-throughput sequencing of the melanoma genome. Exp Dermatol. 2013;22(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  • Kwon EK, Basel D, Siegel D, Martin KL. A review of next-generation genetic testing for the dermatologist. Pediatr Dermatol. 2013;30(4):401–8.

    Article  PubMed  Google Scholar 

  • Lander ES. Array of hope. Nat Genet. 1999;21(Suppl):3–4.

    Article  CAS  PubMed  Google Scholar 

  • Lowell S, Jones P, Le Roux I, Dunne J, Watt FM. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr Biol. 2000;10:491–500.

    Article  CAS  PubMed  Google Scholar 

  • Lowry WE, Blanpain C, Nowak JA, Guasch G, Lewis L, Fuchs E. Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev. 2005;19:1596–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez Arias A, Stewart A. Molecular principles of animal development. New York: Oxford University Press; 2002.

    Google Scholar 

  • Mascia F, Mariani V, Girolomoni G, Pastore S. Blockade of the EGF receptor induces a deranged chemokine expression in keratinocytes leading to enhanced skin inflammation. Am J Pathol. 2003;163:303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascia F, Cataisson C, Lee TC, Threadgill D, Mariani V, Amerio P, Chandrasekhara C, Souto Adeva G, Girolomoni G, Yuspa SH, Pastore S. EGFR regulates the expression of keratinocyte-derived granulocyte/macrophage colony-stimulating factor in vitro and in vivo. J Invest Dermatol. 2010;130(3):682–93.

    Article  CAS  PubMed  Google Scholar 

  • Mille-Hamard L, Billat VL, Henry E, Bonnamy B, Joly F, Benech P, Barrey E. Skeletal muscle alterations and exercise performance decrease in erythropoietin-deficient mice: a comparative study. BMC Med Genomics. 2012;5(1):29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller LS, Sørensen OE, Liu PT, Jalian HR, Eshttiaghpour D, Behmanesh BE, et al. TGF-α regulates TLR expression and function on epidermal keratinocytes. J Immunol. 2005;174:6137–43.

    Article  CAS  PubMed  Google Scholar 

  • National Institutes of Health. All about the human genome project internet. Bethesda: National Institutes of Health (2012). http://www.genome.gov/10001772. Accessed 5 Jan 2012.

  • Nishimoto S, Kotani H, Tsuruta S, Shimizu N, Ito M, Shichita T, Morita R, Takahashi H, Amagai M, Yoshimura A. Th17 cells carrying TCR recognizing epidermal autoantigen induce psoriasis-like skin inflammation. J Immunol. 2013;191(6):3065–72.

    Article  CAS  PubMed  Google Scholar 

  • Nusse R, Varmus H. Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J.2012;31(12):2670–84.

    Google Scholar 

  • Oestreicher JL, Walters IB, Kikuchi T, et al. Molecular classification of psoriasis disease-associated DNA microarray technology in dermatology genes through pharmacogenomic expression profiling. Pharmacogenomics J. 2001;1:272–87.

    Article  CAS  PubMed  Google Scholar 

  • Peterson S. DNA microarrays RNAseq-the winner and new heavyweight champion is?…It’s a draw. Infect Dis Microb Environ Genomics Seq. http://blogs.jcvi.org/2010/02/dna-microarrays-vs-rnaseq-the-winner-and-new-heavyweight-champion-is-it’s-a-draw/. Accessed on 3 Feb 2010.

  • Pietrzak A, Zalewska A, Chodorowska G, Nockowski P, Michalak-Stoma A, Osemlak P, Krasowska D. Genes and structure of selected cytokines involved in pathogenesis of psoriasis. Folia Histochem Cytobiol. 2008;46(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  • Rao T, Kühl M. An updated overview on Wnt signaling pathways: a prelude for more. Circ Res. 2010;106:1798–806.

    Article  CAS  PubMed  Google Scholar 

  • Rees JL, Harding RM. Understanding the evolution of human pigmentation: recent contributions from population genetics. J Invest Dermatol. 2012;132(3 Pt 2):846–53.

    Article  CAS  PubMed  Google Scholar 

  • Robert C, Soria JC, Spatz A, Le Cesne A, Malka D, Pautier P, et al. Cutaneous side-effects of kinase inhibitors and blocking antibodies. Lancet Oncol. 2005;6:491–500.

    Article  CAS  PubMed  Google Scholar 

  • Saneczko F, Kaszuba A, Trznadel-BudŸko E. Human leukocyte antigens (HLA) in psoriasis. (Polish). Pol Merk Lek. 1997;3:210–2.

    Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–70.

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Jones WD, Jensen RV, Harris SC, Perkins RG, et al. The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies. BMC Bioinformatics. 2008;9 Suppl 9:S10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sørensen OE, Cowland JB, Theilgaard-Mönch K, Liu L, Ganz T, Borrregaard N. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol. 2003;170:5583–9.

    Article  PubMed  Google Scholar 

  • Suarez-Farinas M, Lowes MA, Zaba LC, Krueger JG. Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analyses (GSEA). PLoS One. 2010;5(4):e10247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Swindell WR, Johnston A, Voorhees JJ, Elder JT, Gudjonsson JE. Dissecting the psoriasis transcriptome: inflammatory- and cytokine-driven gene expression in lesions from 163 patients. BMC Genomics. 2013;14:527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witten DM, Tibshirani R. A comparison of fold-change and the t-statistic for microarray data analyses. Stanford: Stanford University; 2007. p. 1–13.

    Google Scholar 

  • Zhang M, Yao C, Guo Z, Zou J, Zhang L, et al. Apparently low reproducibility of true differential expression discoveries in microarray studies. Bioinformatics. 2008;24:2057–63.

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Gupta S, Seielstad M, Liu J, Thalamuthu A. Pathway-based analysis using reduced gene subsets in genome-wide association studies. BMC Bioinformatics. 2011;12:17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Krueger JG, Kao MC, et al. Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63,100-element oligonucleotide array. Physiol Genomics. 2003;13:69–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Benech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Benech, P. (2017). Gene Expression and Genetic Evaluation of the Skin. In: Humbert, P., Fanian, F., Maibach, H., Agache, P. (eds) Agache's Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-32383-1_126

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32383-1_126

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32381-7

  • Online ISBN: 978-3-319-32383-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics